{-# OPTIONS --safe #-}
module Cubical.Data.Bool.Properties where
open import Cubical.Core.Everything
open import Cubical.Functions.Involution
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Pointed
open import Cubical.Data.Sum
open import Cubical.Data.Bool.Base
open import Cubical.Data.Empty
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Sigma
open import Cubical.Data.Unit using (Unit; isPropUnit)
open import Cubical.HITs.PropositionalTruncation hiding (rec)
open import Cubical.Relation.Nullary
private
variable
ℓ : Level
A : Type ℓ
notnot : ∀ x → not (not x) ≡ x
notnot true = refl
notnot false = refl
notIso : Iso Bool Bool
Iso.fun notIso = not
Iso.inv notIso = not
Iso.rightInv notIso = notnot
Iso.leftInv notIso = notnot
notIsEquiv : isEquiv not
notIsEquiv = involIsEquiv {f = not} notnot
notEquiv : Bool ≃ Bool
notEquiv = involEquiv {f = not} notnot
notEq : Bool ≡ Bool
notEq = involPath {f = not} notnot
private
nfalse : Bool
nfalse = transp (λ i → notEq i) i0 true
nfalsepath : nfalse ≡ false
nfalsepath = refl
K-Bool
: (P : {b : Bool} → b ≡ b → Type ℓ)
→ (∀{b} → P {b} refl)
→ ∀{b} → (q : b ≡ b) → P q
K-Bool P Pr {false} = J (λ{ false q → P q ; true _ → Lift ⊥ }) Pr
K-Bool P Pr {true} = J (λ{ true q → P q ; false _ → Lift ⊥ }) Pr
isSetBool : isSet Bool
isSetBool a b = J (λ _ p → ∀ q → p ≡ q) (K-Bool (refl ≡_) refl)
true≢false : ¬ true ≡ false
true≢false p = subst (λ b → if b then Bool else ⊥) p true
false≢true : ¬ false ≡ true
false≢true p = subst (λ b → if b then ⊥ else Bool) p true
¬true→false : (x : Bool) → ¬ x ≡ true → x ≡ false
¬true→false false _ = refl
¬true→false true p = Empty.rec (p refl)
¬false→true : (x : Bool) → ¬ x ≡ false → x ≡ true
¬false→true false p = Empty.rec (p refl)
¬false→true true _ = refl
not≢const : ∀ x → ¬ not x ≡ x
not≢const false = true≢false
not≢const true = false≢true
zeroˡ : ∀ x → true or x ≡ true
zeroˡ false = refl
zeroˡ true = refl
zeroʳ : ∀ x → x or true ≡ true
zeroʳ false = refl
zeroʳ true = refl
or-identityˡ : ∀ x → false or x ≡ x
or-identityˡ false = refl
or-identityˡ true = refl
or-identityʳ : ∀ x → x or false ≡ x
or-identityʳ false = refl
or-identityʳ true = refl
or-comm : ∀ x y → x or y ≡ y or x
or-comm false y =
false or y ≡⟨ or-identityˡ y ⟩
y ≡⟨ sym (or-identityʳ y) ⟩
y or false ∎
or-comm true y =
true or y ≡⟨ zeroˡ y ⟩
true ≡⟨ sym (zeroʳ y) ⟩
y or true ∎
or-assoc : ∀ x y z → x or (y or z) ≡ (x or y) or z
or-assoc false y z =
false or (y or z) ≡⟨ or-identityˡ _ ⟩
y or z ≡[ i ]⟨ or-identityˡ y (~ i) or z ⟩
((false or y) or z) ∎
or-assoc true y z =
true or (y or z) ≡⟨ zeroˡ _ ⟩
true ≡⟨ sym (zeroˡ _) ⟩
true or z ≡[ i ]⟨ zeroˡ y (~ i) or z ⟩
(true or y) or z ∎
or-idem : ∀ x → x or x ≡ x
or-idem false = refl
or-idem true = refl
⊕-identityʳ : ∀ x → x ⊕ false ≡ x
⊕-identityʳ false = refl
⊕-identityʳ true = refl
⊕-comm : ∀ x y → x ⊕ y ≡ y ⊕ x
⊕-comm false false = refl
⊕-comm false true = refl
⊕-comm true false = refl
⊕-comm true true = refl
⊕-assoc : ∀ x y z → x ⊕ (y ⊕ z) ≡ (x ⊕ y) ⊕ z
⊕-assoc false y z = refl
⊕-assoc true false z = refl
⊕-assoc true true z = notnot z
not-⊕ˡ : ∀ x y → not (x ⊕ y) ≡ not x ⊕ y
not-⊕ˡ false y = refl
not-⊕ˡ true y = notnot y
⊕-invol : ∀ x y → x ⊕ (x ⊕ y) ≡ y
⊕-invol false x = refl
⊕-invol true x = notnot x
isEquiv-⊕ : ∀ x → isEquiv (x ⊕_)
isEquiv-⊕ x = involIsEquiv (⊕-invol x)
⊕-Path : ∀ x → Bool ≡ Bool
⊕-Path x = involPath {f = x ⊕_} (⊕-invol x)
⊕-Path-refl : ⊕-Path false ≡ refl
⊕-Path-refl = isInjectiveTransport refl
¬transportNot : ∀(P : Bool ≡ Bool) b → ¬ (transport P (not b) ≡ transport P b)
¬transportNot P b eq = not≢const b sub
where
sub : not b ≡ b
sub = subst {A = Bool → Bool} (λ f → f (not b) ≡ f b)
(λ i c → transport⁻Transport P c i) (cong (transport⁻ P) eq)
module BoolReflection where
data Table (A : Type₀) (P : Bool ≡ A) : Type₀ where
inspect : (b c : A)
→ transport P false ≡ b
→ transport P true ≡ c
→ Table A P
table : ∀ P → Table Bool P
table = J Table (inspect false true refl refl)
reflLemma : (P : Bool ≡ Bool)
→ transport P false ≡ false
→ transport P true ≡ true
→ transport P ≡ transport (⊕-Path false)
reflLemma P ff tt i false = ff i
reflLemma P ff tt i true = tt i
notLemma : (P : Bool ≡ Bool)
→ transport P false ≡ true
→ transport P true ≡ false
→ transport P ≡ transport (⊕-Path true)
notLemma P ft tf i false = ft i
notLemma P ft tf i true = tf i
categorize : ∀ P → transport P ≡ transport (⊕-Path (transport P false))
categorize P with table P
categorize P | inspect false true p q
= subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (reflLemma P p q)
categorize P | inspect true false p q
= subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (notLemma P p q)
categorize P | inspect false false p q
= Empty.rec (¬transportNot P false (q ∙ sym p))
categorize P | inspect true true p q
= Empty.rec (¬transportNot P false (q ∙ sym p))
⊕-complete : ∀ P → P ≡ ⊕-Path (transport P false)
⊕-complete P = isInjectiveTransport (categorize P)
⊕-comp : ∀ p q → ⊕-Path p ∙ ⊕-Path q ≡ ⊕-Path (q ⊕ p)
⊕-comp p q = isInjectiveTransport (λ i x → ⊕-assoc q p x i)
open Iso
reflectIso : Iso Bool (Bool ≡ Bool)
reflectIso .fun = ⊕-Path
reflectIso .inv P = transport P false
reflectIso .leftInv = ⊕-identityʳ
reflectIso .rightInv P = sym (⊕-complete P)
reflectEquiv : Bool ≃ (Bool ≡ Bool)
reflectEquiv = isoToEquiv reflectIso
_≤_ : Bool → Bool → Type
true ≤ false = ⊥
_ ≤ _ = Unit
_≥_ : Bool → Bool → Type
false ≥ true = ⊥
_ ≥ _ = Unit
isProp≤ : ∀ b c → isProp (b ≤ c)
isProp≤ true false = isProp⊥
isProp≤ true true = isPropUnit
isProp≤ false false = isPropUnit
isProp≤ false true = isPropUnit
isProp≥ : ∀ b c → isProp (b ≥ c)
isProp≥ false true = isProp⊥
isProp≥ true true = isPropUnit
isProp≥ false false = isPropUnit
isProp≥ true false = isPropUnit
isProp-Bool→Type : ∀ b → isProp (Bool→Type b)
isProp-Bool→Type false = isProp⊥
isProp-Bool→Type true = isPropUnit
isPropDep-Bool→Type : isPropDep Bool→Type
isPropDep-Bool→Type = isOfHLevel→isOfHLevelDep 1 isProp-Bool→Type
IsoBool→∙ : ∀ {ℓ} {A : Pointed ℓ} → Iso ((Bool , true) →∙ A) (typ A)
Iso.fun IsoBool→∙ f = fst f false
fst (Iso.inv IsoBool→∙ a) false = a
fst (Iso.inv (IsoBool→∙ {A = A}) a) true = pt A
snd (Iso.inv IsoBool→∙ a) = refl
Iso.rightInv IsoBool→∙ a = refl
Iso.leftInv IsoBool→∙ (f , p) =
ΣPathP ((funExt (λ { false → refl ; true → sym p}))
, λ i j → p (~ i ∨ j))
open import Cubical.Data.Unit
BoolProp≃BoolProp* : {a : Bool} → Bool→Type a ≃ Bool→Type* {ℓ} a
BoolProp≃BoolProp* {a = true} = Unit≃Unit*
BoolProp≃BoolProp* {a = false} = uninhabEquiv Empty.rec Empty.rec*
Bool→TypeInj : (a b : Bool) → Bool→Type a ≃ Bool→Type b → a ≡ b
Bool→TypeInj true true _ = refl
Bool→TypeInj true false p = Empty.rec (p .fst tt)
Bool→TypeInj false true p = Empty.rec (invEq p tt)
Bool→TypeInj false false _ = refl
Bool→TypeInj* : (a b : Bool) → Bool→Type* {ℓ} a ≃ Bool→Type* {ℓ} b → a ≡ b
Bool→TypeInj* true true _ = refl
Bool→TypeInj* true false p = Empty.rec* (p .fst tt*)
Bool→TypeInj* false true p = Empty.rec* (invEq p tt*)
Bool→TypeInj* false false _ = refl
isPropBool→Type : {a : Bool} → isProp (Bool→Type a)
isPropBool→Type {a = true} = isPropUnit
isPropBool→Type {a = false} = isProp⊥
isPropBool→Type* : {a : Bool} → isProp (Bool→Type* {ℓ} a)
isPropBool→Type* {a = true} = isPropUnit*
isPropBool→Type* {a = false} = isProp⊥*
DecBool→Type : {a : Bool} → Dec (Bool→Type a)
DecBool→Type {a = true} = yes tt
DecBool→Type {a = false} = no (λ x → x)
DecBool→Type* : {a : Bool} → Dec (Bool→Type* {ℓ} a)
DecBool→Type* {a = true} = yes tt*
DecBool→Type* {a = false} = no (λ (lift x) → x)
Dec→DecBool : {P : Type ℓ} → (dec : Dec P) → P → Bool→Type (Dec→Bool dec)
Dec→DecBool (yes p) _ = tt
Dec→DecBool (no ¬p) q = Empty.rec (¬p q)
DecBool→Dec : {P : Type ℓ} → (dec : Dec P) → Bool→Type (Dec→Bool dec) → P
DecBool→Dec (yes p) _ = p
Dec≃DecBool : {P : Type ℓ} → (h : isProp P)(dec : Dec P) → P ≃ Bool→Type (Dec→Bool dec)
Dec≃DecBool h dec = propBiimpl→Equiv h isPropBool→Type (Dec→DecBool dec) (DecBool→Dec dec)
Bool≡BoolDec : {a : Bool} → a ≡ Dec→Bool (DecBool→Type {a = a})
Bool≡BoolDec {a = true} = refl
Bool≡BoolDec {a = false} = refl
Dec→DecBool* : {P : Type ℓ} → (dec : Dec P) → P → Bool→Type* {ℓ} (Dec→Bool dec)
Dec→DecBool* (yes p) _ = tt*
Dec→DecBool* (no ¬p) q = Empty.rec (¬p q)
DecBool→Dec* : {P : Type ℓ} → (dec : Dec P) → Bool→Type* {ℓ} (Dec→Bool dec) → P
DecBool→Dec* (yes p) _ = p
Dec≃DecBool* : {P : Type ℓ} → (h : isProp P)(dec : Dec P) → P ≃ Bool→Type* {ℓ} (Dec→Bool dec)
Dec≃DecBool* h dec = propBiimpl→Equiv h isPropBool→Type* (Dec→DecBool* dec) (DecBool→Dec* dec)
Bool≡BoolDec* : {a : Bool} → a ≡ Dec→Bool (DecBool→Type* {ℓ} {a = a})
Bool≡BoolDec* {a = true} = refl
Bool≡BoolDec* {a = false} = refl
Bool→Type× : (a b : Bool) → Bool→Type (a and b) → Bool→Type a × Bool→Type b
Bool→Type× true true _ = tt , tt
Bool→Type× true false p = Empty.rec p
Bool→Type× false true p = Empty.rec p
Bool→Type× false false p = Empty.rec p
Bool→Type×' : (a b : Bool) → Bool→Type a × Bool→Type b → Bool→Type (a and b)
Bool→Type×' true true _ = tt
Bool→Type×' true false (_ , p) = Empty.rec p
Bool→Type×' false true (p , _) = Empty.rec p
Bool→Type×' false false (p , _) = Empty.rec p
Bool→Type×≃ : (a b : Bool) → Bool→Type a × Bool→Type b ≃ Bool→Type (a and b)
Bool→Type×≃ a b =
propBiimpl→Equiv (isProp× isPropBool→Type isPropBool→Type) isPropBool→Type
(Bool→Type×' a b) (Bool→Type× a b)
Bool→Type⊎ : (a b : Bool) → Bool→Type (a or b) → Bool→Type a ⊎ Bool→Type b
Bool→Type⊎ true true _ = inl tt
Bool→Type⊎ true false _ = inl tt
Bool→Type⊎ false true _ = inr tt
Bool→Type⊎ false false p = Empty.rec p
Bool→Type⊎' : (a b : Bool) → Bool→Type a ⊎ Bool→Type b → Bool→Type (a or b)
Bool→Type⊎' true true _ = tt
Bool→Type⊎' true false _ = tt
Bool→Type⊎' false true _ = tt
Bool→Type⊎' false false (inl p) = Empty.rec p
Bool→Type⊎' false false (inr p) = Empty.rec p
PropBoolP→P : (dec : Dec A) → Bool→Type (Dec→Bool dec) → A
PropBoolP→P (yes p) _ = p
P→PropBoolP : (dec : Dec A) → A → Bool→Type (Dec→Bool dec)
P→PropBoolP (yes p) _ = tt
P→PropBoolP (no ¬p) = ¬p
Bool≡ : Bool → Bool → Bool
Bool≡ true true = true
Bool≡ true false = false
Bool≡ false true = false
Bool≡ false false = true
Bool≡≃ : (a b : Bool) → (a ≡ b) ≃ Bool→Type (Bool≡ a b)
Bool≡≃ true true = isContr→≃Unit (inhProp→isContr refl (isSetBool _ _))
Bool≡≃ true false = uninhabEquiv true≢false Empty.rec
Bool≡≃ false true = uninhabEquiv false≢true Empty.rec
Bool≡≃ false false = isContr→≃Unit (inhProp→isContr refl (isSetBool _ _))
open Iso
Iso-⊤⊎⊤-Bool : Iso (Unit ⊎ Unit) Bool
Iso-⊤⊎⊤-Bool .fun (inl tt) = true
Iso-⊤⊎⊤-Bool .fun (inr tt) = false
Iso-⊤⊎⊤-Bool .inv true = inl tt
Iso-⊤⊎⊤-Bool .inv false = inr tt
Iso-⊤⊎⊤-Bool .leftInv (inl tt) = refl
Iso-⊤⊎⊤-Bool .leftInv (inr tt) = refl
Iso-⊤⊎⊤-Bool .rightInv true = refl
Iso-⊤⊎⊤-Bool .rightInv false = refl