{-# OPTIONS --erased-cubical #-}
module Agda.Primitive.Cubical where
{-# BUILTIN CUBEINTERVALUNIV IUniv #-}
{-# BUILTIN INTERVAL I #-}
{-# BUILTIN IZERO i0 #-}
{-# BUILTIN IONE i1 #-}
{-# COMPILE JS i0 = false #-}
{-# COMPILE JS i1 = true #-}
infix 30 primINeg
infixr 20 primIMin primIMax
primitive
primIMin : I → I → I
primIMax : I → I → I
primINeg : I → I
{-# BUILTIN ISONE IsOne #-}
postulate
itIsOne : IsOne i1
IsOne1 : ∀ i j → IsOne i → IsOne (primIMax i j)
IsOne2 : ∀ i j → IsOne j → IsOne (primIMax i j)
{-# BUILTIN ITISONE itIsOne #-}
{-# BUILTIN ISONE1 IsOne1 #-}
{-# BUILTIN ISONE2 IsOne2 #-}
{-# COMPILE JS itIsOne = { "tt" : a => a["tt"]() } #-}
{-# COMPILE JS IsOne1 =
_ => _ => _ => { return { "tt" : a => a["tt"]() } }
#-}
{-# COMPILE JS IsOne2 =
_ => _ => _ => { return { "tt" : a => a["tt"]() } }
#-}
{-# BUILTIN PARTIAL Partial #-}
{-# BUILTIN PARTIALP PartialP #-}
postulate
isOneEmpty : ∀ {ℓ} {A : Partial i0 (Set ℓ)} → PartialP i0 A
{-# BUILTIN ISONEEMPTY isOneEmpty #-}
{-# COMPILE JS isOneEmpty =
_ => x => _ => x({ "tt" : a => a["tt"]() })
#-}
primitive
primPOr : ∀ {ℓ} (i j : I) {A : Partial (primIMax i j) (Set ℓ)}
→ (u : PartialP i (λ z → A (IsOne1 i j z)))
→ (v : PartialP j (λ z → A (IsOne2 i j z)))
→ PartialP (primIMax i j) A
primComp : ∀ {ℓ} (A : (i : I) → Set (ℓ i)) {φ : I} (u : ∀ i → Partial φ (A i)) (a : A i0) → A i1
syntax primPOr p q u t = [ p ↦ u , q ↦ t ]
primitive
primTransp : ∀ {ℓ} (A : (i : I) → Set (ℓ i)) (φ : I) (a : A i0) → A i1
primHComp : ∀ {ℓ} {A : Set ℓ} {φ : I} (u : ∀ i → Partial φ A) (a : A) → A
postulate
PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
{-# BUILTIN PATHP PathP #-}