{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Functions.Fibration where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels using (isOfHLevel→isOfHLevelDep)
open import Cubical.Foundations.Function
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Data.Sigma
private
variable
ℓ ℓb : Level
B : Type ℓb
module FiberIso {ℓ} (p⁻¹ : B → Type ℓ) (x : B) where
p : Σ B p⁻¹ → B
p = fst
fwd : fiber p x → p⁻¹ x
fwd ((x' , y) , q) = subst (λ z → p⁻¹ z) q y
bwd : p⁻¹ x → fiber p x
bwd y = (x , y) , refl
fwd-bwd : ∀ x → fwd (bwd x) ≡ x
fwd-bwd y = transportRefl y
bwd-fwd : ∀ x → bwd (fwd x) ≡ x
bwd-fwd ((x' , y) , q) i = h (r i)
where h : Σ[ s ∈ singl x ] p⁻¹ (s .fst) → fiber p x
h ((x , p) , y) = (x , y) , sym p
r : Path (Σ[ s ∈ singl x ] p⁻¹ (s .fst))
((x , refl ) , subst p⁻¹ q y)
((x' , sym q) , y )
r = ΣPathP (isContrSingl x .snd (x' , sym q)
, toPathP (transport⁻Transport (λ i → p⁻¹ (q i)) y))
fiberEquiv : fiber p x ≃ p⁻¹ x
fiberEquiv = isoToEquiv (iso fwd bwd fwd-bwd bwd-fwd)
open FiberIso using (fiberEquiv) public
module _ {ℓ} {E : Type ℓ} (p : E → B) where
totalEquiv : E ≃ Σ B (fiber p)
totalEquiv = isoToEquiv isom
where isom : Iso E (Σ B (fiber p))
Iso.fun isom x = p x , x , refl
Iso.inv isom (b , x , q) = x
Iso.leftInv isom x i = x
Iso.rightInv isom (b , x , q) i = q i , x , λ j → q (i ∧ j)
module _ (B : Type ℓb) (ℓ : Level) where
private
ℓ' = ℓ-max ℓb ℓ
fibrationEquiv : (Σ[ E ∈ Type ℓ' ] (E → B)) ≃ (B → Type ℓ')
fibrationEquiv = isoToEquiv isom
where isom : Iso (Σ[ E ∈ Type ℓ' ] (E → B)) (B → Type ℓ')
Iso.fun isom (E , p) = fiber p
Iso.inv isom p⁻¹ = Σ B p⁻¹ , fst
Iso.rightInv isom p⁻¹ i x = ua (fiberEquiv p⁻¹ x) i
Iso.leftInv isom (E , p) i = ua e (~ i) , fst ∘ ua-unglue e (~ i)
where e = totalEquiv p
module ForSets {E : Type ℓ} {isSetB : isSet B} (f : E → B) where
module _ {x x'} {px : x ≡ x'} {a' : fiber f x} {b' : fiber f x'} where
fibersEqIfRepsEq : fst a' ≡ fst b'
→ PathP (λ i → fiber f (px i)) a' b'
fibersEqIfRepsEq p = ΣPathP (p ,
(isOfHLevel→isOfHLevelDep 1
(λ (v , w) → isSetB (f v) w)
(snd a') (snd b')
(λ i → (p i , px i))))
open import Cubical.Foundations.Function
fiberPath : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {f : A → B} {b : B} (h h' : fiber f b) →
(Σ[ p ∈ (fst h ≡ fst h') ] (PathP (λ i → f (p i) ≡ b) (snd h) (snd h')))
≡ fiber (cong f) (h .snd ∙∙ refl ∙∙ sym (h' .snd))
fiberPath h h' = cong (Σ (h .fst ≡ h' .fst)) (funExt λ p → flipSquarePath ∙ PathP≡doubleCompPathʳ _ _ _ _)
fiber≡ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {f : A → B} {b : B} (h h' : fiber f b)
→ (h ≡ h') ≡ fiber (cong f) (h .snd ∙∙ refl ∙∙ sym (h' .snd))
fiber≡ {f = f} {b = b} h h' =
ΣPath≡PathΣ ⁻¹ ∙
fiberPath h h'
FibrationStr : (B : Type ℓb) → Type ℓ → Type (ℓ-max ℓ ℓb)
FibrationStr B A = A → B
Fibration : (B : Type ℓb) → (ℓ : Level) → Type (ℓ-max ℓb (ℓ-suc ℓ))
Fibration {ℓb = ℓb} B ℓ = Σ[ A ∈ Type ℓ ] FibrationStr B A