{-

This file proves the higher groupoid structure of types
for homogeneous and heterogeneous paths

-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.GroupoidLaws where

open import Cubical.Foundations.Prelude

private
  variable
     : Level
    A : Type 
    x y z w v : A

_⁻¹ : (x  y)  (y  x)
x≡y ⁻¹ = sym x≡y

infix 40 _⁻¹

-- homogeneous groupoid laws

symInvo : (p : x  y)  p  p ⁻¹ ⁻¹
symInvo p = refl

rUnit : (p : x  y)  p  p  refl
rUnit p j i = compPath-filler p refl j i

-- The filler of left unit: lUnit-filler p =
-- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∨ i)))
-- (refl i) (λ j → compPath-filler refl p i j)) (λ k i → (p (~ k ∧ i ))) (lUnit p)

lUnit-filler : {x y : A} (p : x  y)  I  I  I  A
lUnit-filler {x = x} p j k i =
  hfill  j  λ { (i = i0)  x
                  ; (i = i1)  p (~ k  j )
                  ; (k = i0)  p i
               -- ; (k = i1) → compPath-filler refl p j i
                  }) (inS (p (~ k  i ))) j

lUnit : (p : x  y)  p  refl  p
lUnit p j i = lUnit-filler p i1 j i

symRefl : refl {x = x}  refl ⁻¹
symRefl i = refl

compPathRefl : refl {x = x}  refl  refl
compPathRefl = rUnit refl

-- The filler of right cancellation: rCancel-filler p =
-- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∧ ~ i)))
-- (λ j → compPath-filler p (p ⁻¹) i j) (refl i)) (λ j i → (p (i ∧ ~ j))) (rCancel p)

rCancel-filler :  {x y : A} (p : x  y)  (k j i : I)  A
rCancel-filler {x = x} p k j i =
  hfill  k  λ { (i = i0)  x
                  ; (i = i1)  p (~ k  ~ j)
               -- ; (j = i0) → compPath-filler p (p ⁻¹) k i
                  ; (j = i1)  x
                  }) (inS (p (i  ~ j))) k

rCancel : (p : x  y)  p  p ⁻¹  refl
rCancel {x = x} p j i = rCancel-filler p i1 j i

rCancel-filler' :  {} {A : Type } {x y : A} (p : x  y)  (i j k : I)  A
rCancel-filler' {x = x} {y} p i j k =
  hfill
     i  λ
      { (j = i1)  p (~ i  k)
      ; (k = i0)  x
      ; (k = i1)  p (~ i)
      })
    (inS (p k))
    (~ i)

rCancel' :  {} {A : Type } {x y : A} (p : x  y)  p  p ⁻¹  refl
rCancel' p j k = rCancel-filler' p i0 j k

lCancel : (p : x  y)  p ⁻¹  p  refl
lCancel p = rCancel (p ⁻¹)

assoc : (p : x  y) (q : y  z) (r : z  w) 
  p  q  r  (p  q)  r
assoc p q r k = (compPath-filler p q k)  compPath-filler' q r (~ k)


-- heterogeneous groupoid laws

symInvoP : {A : I  Type }  {x : A i0}  {y : A i1}  (p : PathP A x y) 
     PathP  j  PathP  i  symInvo  i  A i) j i) x y) p (symP (symP p))
symInvoP p = refl

rUnitP : {A : I  Type }  {x : A i0}  {y : A i1}  (p : PathP A x y) 
  PathP  j  PathP  i  rUnit  i  A i) j i) x y) p (compPathP p refl)
rUnitP p j i = compPathP-filler p refl j i

lUnitP : {A : I  Type }  {x : A i0}  {y : A i1}  (p : PathP A x y) 
  PathP  j  PathP  i  lUnit  i  A i) j i) x y) p (compPathP refl p)
lUnitP {A = A} {x = x} p k i =
  comp  j  lUnit-filler  i  A i) j k i)
        j  λ { (i = i0)  x
                ; (i = i1)  p (~ k  j )
                ; (k = i0)  p i
                }) (p (~ k  i ))

rCancelP : {A : I  Type }  {x : A i0}  {y : A i1}  (p : PathP A x y) 
   PathP  j  PathP  i  rCancel  i  A i) j i) x x) (compPathP p (symP p)) refl
rCancelP {A = A} {x = x} p j i =
  comp  k  rCancel-filler  i  A i) k j i)
        k  λ { (i = i0)  x
                ; (i = i1)  p (~ k  ~ j)
                ; (j = i1)  x
                }) (p (i  ~ j))

lCancelP : {A : I  Type }  {x : A i0}  {y : A i1}  (p : PathP A x y) 
   PathP  j  PathP  i  lCancel  i  A i) j i) y y) (compPathP (symP p) p) refl
lCancelP p = rCancelP (symP p)



assocP : {A : I  Type } {x : A i0} {y : A i1} {B_i1 : Type } {B : (A i1)  B_i1} {z : B i1}
  {C_i1 : Type } {C : (B i1)  C_i1} {w : C i1} (p : PathP A x y) (q : PathP  i  B i) y z) (r : PathP  i  C i) z w) 
  PathP  j  PathP  i  assoc  i  A i) B C j i) x w) (compPathP p (compPathP q r)) (compPathP (compPathP p q) r)
assocP {A = A} {B = B} {C = C} p q r k i =
    comp (\ j'  hfill   j  λ {
                     (i = i0)  A i0
                   ; (i = i1)  compPath-filler'  i₁  B i₁)  i₁  C i₁) (~ k) j })
                     (inS (compPath-filler  i₁  A i₁)  i₁  B i₁) k i)) j')
      j  λ
      { (i = i0)  p i0
      ; (i = i1) 
        comp (\ j'  hfill ((λ l  λ
            { (j = i0)  B k
            ; (j = i1)  C l
            ; (k = i1)  C (j  l)
            })) (inS (B ( j  k)) ) j')
           l  λ
            { (j = i0)  q k
            ; (j = i1)  r l
            ; (k = i1)  r (j  l)
            })
          (q (j  k))
      })
    (compPathP-filler p q k i)



-- Loic's code below

-- some exchange law for doubleCompPath and refl

invSides-filler : {x y z : A} (p : x  y) (q : x  z)  Square p (sym q) q (sym p)
invSides-filler {x = x} p q i j =
  hcomp  k  λ { (i = i0)  p (k  j)
                 ; (i = i1)  q (~ j  k)
                 ; (j = i0)  q (i  k)
                 ; (j = i1)  p (~ i  k)})
        x

leftright : { : Level} {A : Type } {x y z : A} (p : x  y) (q : y  z) 
            (refl ∙∙ p ∙∙ q)  (p ∙∙ q ∙∙ refl)
leftright p q i j =
  hcomp  t  λ { (j = i0)  p (i  (~ t))
                 ; (j = i1)  q (t  i) })
        (invSides-filler q (sym p) (~ i) j)

-- equating doubleCompPath and a succession of two compPath

split-leftright : { : Level} {A : Type } {w x y z : A} (p : w  x) (q : x  y) (r : y  z) 
                  (p ∙∙ q ∙∙ r)  (refl ∙∙ (p ∙∙ q ∙∙ refl) ∙∙ r)
split-leftright p q r j i =
  hcomp  t  λ { (i = i0)  p (~ j  ~ t)
                 ; (i = i1)  r t })
        (doubleCompPath-filler p q refl j i)

split-leftright' : { : Level} {A : Type } {w x y z : A} (p : w  x) (q : x  y) (r : y  z) 
                  (p ∙∙ q ∙∙ r)  (p ∙∙ (refl ∙∙ q ∙∙ r) ∙∙ refl)
split-leftright' p q r j i =
  hcomp  t  λ { (i = i0)  p (~ t)
                 ; (i = i1)  r (j  t) })
        (doubleCompPath-filler refl q r j i)

doubleCompPath-elim : { : Level} {A : Type } {w x y z : A} (p : w  x) (q : x  y)
                      (r : y  z)  (p ∙∙ q ∙∙ r)  (p  q)  r
doubleCompPath-elim p q r = (split-leftright p q r)   i  (leftright p q (~ i))  r)

doubleCompPath-elim' : { : Level} {A : Type } {w x y z : A} (p : w  x) (q : x  y)
                       (r : y  z)  (p ∙∙ q ∙∙ r)  p  (q  r)
doubleCompPath-elim' p q r = (split-leftright' p q r)  (sym (leftright p (q  r)))

cong-∙∙ :  {B : Type } (f : A  B) (p : w  x) (q : x  y) (r : y  z)
           cong f (p ∙∙ q ∙∙ r)  (cong f p) ∙∙ (cong f q) ∙∙ (cong f r)
cong-∙∙ f p q r j i = hcomp  k  λ { (j = i0)  f (doubleCompPath-filler p q r k i)
                                     ; (i = i0)  f (p (~ k))
                                     ; (i = i1)  f (r k) })
                            (f (q i))

cong-∙ :  {B : Type } (f : A  B) (p : x  y) (q : y  z)
          cong f (p  q)  (cong f p)  (cong f q)
cong-∙ f p q = cong-∙∙ f refl p q

hcomp-unique :  {} {A : Type } {φ}  (u : I  Partial φ A)  (u0 : A [ φ  u i0 ]) 
               (h2 :  i  A [ (φ  ~ i)  (\ { (φ = i1)  u i 1=1; (i = i0)  outS u0}) ])
                (hcomp u (outS u0)  outS (h2 i1)) [ φ  (\ { (φ = i1)  (\ i  u i1 1=1)}) ]
hcomp-unique {φ = φ} u u0 h2 = inS (\ i  hcomp (\ k  \ { (φ = i1)  u k 1=1
                                                            ; (i = i1)  outS (h2 k) })
                                                   (outS u0))


lid-unique :  {} {A : Type } {φ}  (u : I  Partial φ A)  (u0 : A [ φ  u i0 ]) 
               (h1 h2 :  i  A [ (φ  ~ i)  (\ { (φ = i1)  u i 1=1; (i = i0)  outS u0}) ])
                (outS (h1 i1)  outS (h2 i1)) [ φ  (\ { (φ = i1)  (\ i  u i1 1=1)}) ]
lid-unique {φ = φ} u u0 h1 h2 = inS (\ i  hcomp (\ k  \ { (φ = i1)  u k 1=1
                                                            ; (i = i0)  outS (h1 k)
                                                            ; (i = i1)  outS (h2 k) })
                                                   (outS u0))


transp-hcomp :  {} (φ : I) {A' : Type }
                     (A : (i : I)  Type  [ φ   _  A') ]) (let B = \ (i : I)  outS (A i))
                   {ψ} (u : I  Partial ψ (B i0))  (u0 : B i0 [ ψ  u i0 ]) 
                 (transp (\ i  B i) φ (hcomp u (outS u0))  hcomp (\ i o  transp (\ i  B i) φ (u i o)) (transp (\ i  B i) φ (outS u0)))
                   [ ψ  (\ { (ψ = i1)  (\ i  transp (\ i  B i) φ (u i1 1=1))}) ]
transp-hcomp φ A u u0 = inS (sym (outS (hcomp-unique
               ((\ i o  transp (\ i  B i) φ (u i o))) (inS (transp (\ i  B i) φ (outS u0)))
                 \ i  inS (transp (\ i  B i) φ (hfill u u0 i)))))
  where
    B = \ (i : I)  outS (A i)


hcomp-cong :  {} {A : Type } {φ}  (u : I  Partial φ A)  (u0 : A [ φ  u i0 ]) 
                                     (u' : I  Partial φ A)  (u0' : A [ φ  u' i0 ]) 
             (ueq :  i  PartialP φ (\ o  u i o  u' i o))  (outS u0  outS u0') [ φ  (\ { (φ = i1)  ueq i0 1=1}) ]
              (hcomp u (outS u0)  hcomp u' (outS u0')) [ φ  (\ { (φ = i1)  ueq i1 1=1 }) ]
hcomp-cong u u0 u' u0' ueq 0eq = inS (\ j  hcomp (\ i o  ueq i o j) (outS 0eq j))

congFunct-filler :  { ℓ'} {A : Type } {B : Type ℓ'} {x y z : A} (f : A  B) (p : x  y) (q : y  z)
                 I  I  I  B
congFunct-filler {x = x} f p q i j z =
  hfill  k  λ { (i = i0)  f x
                 ; (i = i1)  f (q k)
                 ; (j = i0)  f (compPath-filler p q k i)})
       (inS (f (p i)))
       z

congFunct :  {} {B : Type } (f : A  B) (p : x  y) (q : y  z)  cong f (p  q)  cong f p  cong f q
congFunct f p q j i = congFunct-filler f p q i j i1


-- congFunct for dependent types
congFunct-dep :  { ℓ'} {A : Type } {B : A  Type ℓ'} {x y z : A} (f : (a : A)  B a) (p : x  y) (q : y  z)
          PathP  i  PathP  j  B (compPath-filler p q i j)) (f x) (f (q i))) (cong f p) (cong f (p  q))
congFunct-dep {B = B} {x = x} f p q i j = f (compPath-filler p q i j)

cong₂Funct :  { ℓ'} {A : Type } {x y : A} {B : Type ℓ'} (f : A  A  B) 
        (p : x  y) 
        {u v : A} (q : u  v) 
        cong₂ f p q  cong  x  f x u) p  cong (f y) q
cong₂Funct {x = x} {y = y} f p {u = u} {v = v} q j i =
  hcomp  k  λ { (i = i0)  f x u
                  ; (i = i1)  f y (q k)
                  ; (j = i0)  f (p i) (q (i  k))})
       (f (p i) u)

symDistr-filler :  {} {A : Type } {x y z : A} (p : x  y) (q : y  z)  I  I  I  A
symDistr-filler {A = A} {z = z} p q i j k =
  hfill  k  λ { (i = i0)  q (k  j)
                 ; (i = i1)  p (~ k  j) })
       (inS (invSides-filler q (sym p) i j))
       k

symDistr :  {} {A : Type } {x y z : A} (p : x  y) (q : y  z)  sym (p  q)  sym q  sym p
symDistr p q i j = symDistr-filler p q j i i1

-- we can not write hcomp-isEquiv : {ϕ : I} → (p : I → Partial ϕ A) → isEquiv (λ (a : A [ ϕ ↦ p i0 ]) → hcomp p a)
-- due to size issues. But what we can write (compare to hfill) is:
hcomp-equivFillerSub : {ϕ : I}  (p : I  Partial ϕ A)  (a : A [ ϕ  p i0 ])
                      (i : I)
                      A [ ϕ  i  ~ i   { (i = i0)  outS a
                                            ; (i = i1)  hcomp  i  p (~ i)) (hcomp p (outS a))
                                            ; (ϕ = i1)  p i0 1=1 }) ]
hcomp-equivFillerSub {ϕ = ϕ} p a i =
  inS (hcomp  k  λ { (i = i1)  hfill  j  p (~ j)) (inS (hcomp p (outS a))) k
                      ; (i = i0)  outS a
                      ; (ϕ = i1)  p (~ k  i) 1=1 })
             (hfill p a i))

hcomp-equivFiller : {ϕ : I}  (p : I  Partial ϕ A)  (a : A [ ϕ  p i0 ])
                   (i : I)  A
hcomp-equivFiller p a i = outS (hcomp-equivFillerSub p a i)


pentagonIdentity : (p : x  y)  (q : y  z)  (r : z  w)  (s : w  v)
                      
            (assoc p q (r  s)  assoc (p  q) r s)
                              
   cong (p ∙_) (assoc q r s) ∙∙ assoc p (q  r) s ∙∙ cong (_∙ s) (assoc p q r)

pentagonIdentity {x = x} {y} p q r s =
         i 
               j  cong (p ∙_) (assoc q r s) (i  j))
           ∙∙  j  lemma₀₀ i j  lemma₀₁ i j)
           ∙∙  j  lemma₁₀ i j  lemma₁₁ i j)
        )
   where


    lemma₀₀ : ( i j : I)  _  _
    lemma₀₀ i j i₁ =
         hcomp
         k  λ { (j = i0)  p i₁
                 ; (i₁ = i0)  x
                 ; (i₁ = i1)  hcomp
                                  k₁  λ { (i = i0)  (q (j  k))
                                           ; (k = i0)  y
                                           ; (j = i0)  y
                                           ; (j = i1)(k = i1)  r (k₁  i)})
                                 (q (j  k))
        }) (p i₁)

    lemma₀₁ : ( i j : I)  hcomp
                        k  λ {(i = i0)  q j
                               ; (j = i0)  y
                               ; (j = i1)  r (k  i)
                          })
                       (q j)  _
    lemma₀₁ i j i₁ = (hcomp
                         k  λ { (j = i1)  hcomp
                                                 k₁  λ { (i₁ = i0)  r i
                                                          ; (k = i0)  r i
                                                          ; (i = i1)  s (k₁   k   i₁)
                                                          ; (i₁ = i1)(k = i1)  s k₁ })
                                                (r ((i₁  k)  i))
                                  ; (i₁ = i0)  compPath-filler q r i j
                                  ; (i₁ = i1)  hcomp
                                                   k₁  λ { (k = i0)  r i
                                                            ; (k = i1)  s k₁
                                                            ; (i = i1)  s (k  k₁)})
                                                  (r (i  k))})
                         (hfill
                              k  λ { (j = i1)  r k
                                      ; (i₁ = i1)  r k
                                      ; (i₁ = i0)(j = i0)  y })
                             (inS (q (i₁  j))) i))

    lemma₁₁ : ( i j : I)  (r (i  j))  _
    lemma₁₁ i j i₁ =
           hcomp
              k  λ { (i = i1)  s (i₁  k)
                      ; (j = i1)  s (i₁  k)
                      ; (i₁ = i0)  r (i  j)
                      ; (i₁ = i1)  s k
              }) (r (i  j  i₁))


    lemma₁₀-back :  I  I  I  _
    lemma₁₀-back i j i₁ =
        hcomp
          k  λ {
           (i₁ = i0)  x
         ; (i₁ = i1)  hcomp
                          k₁  λ { (k = i0)  q (j  ~ i)
                                   ; (k = i1)  r (k₁  j)
                                   ; (j = i0)  q (k  ~ i)
                                   ; (j = i1)  r (k₁  k)
                                   ; (i = i0)  r (k  j  k₁)
                         })
                         (q (k  j  ~ i))
         ; (i = i0)(j = i0)  (p  q) i₁
         })
        (hcomp
            k  λ { (i₁ = i0)  x
                    ; (i₁ = i1)  q ((j  ~ i )  k)
                    ; (j = i0)(i = i1)  p i₁
            })
            (p i₁))


    lemma₁₀-front : I  I  I  _
    lemma₁₀-front i j i₁ =
       (((λ _  x) ∙∙ compPath-filler p q j ∙∙
          i₁ 
             hcomp
                 k  λ { (i₁ = i0)  q j
                         ; (i₁ = i1)  r (k  (j  i))
                         ; (j = i0)(i = i0)  q i₁
                         ; (j = i1)  r (i₁  k)
               })
            (q (j  i₁))
         )) i₁)

    compPath-filler-in-filler :
                (p : _  y)  (q : _  _ )
               _≡_ {A = Square (p  q) (p  q)  _  x)  _  z)}
                i j  hcomp
                           i₂ 
                           λ { (j = i0)  x
                             ; (j = i1)  q (i₂  ~ i)
                             ; (i = i0)  (p  q) j
                            })
                          (compPath-filler p q (~ i) j))
                _  p  q)
    compPath-filler-in-filler p q z i j =
       hcomp
          k  λ {
            (j = i0)  p i0
          ; (j = i1)  q (k  ~ i  ~ z)
          ; (i = i0)  hcomp
                        i₂  λ {
                         (j = i0)  p i0
                        ;(j = i1)  q ((k   ~ z)  i₂)
                        ;(z = i1) (k = i0)  p j
                       })
                      (p j)
          ; (i = i1)   compPath-filler p  i₁  q (k  i₁)) k j
          ; (z = i0)  hfill
                         ((λ i₂  λ { (j = i0)  p i0
                             ; (j = i1)  q (i₂  ~ i)
                             ; (i = i0)  (p  q) j
                            }))
                         (inS ((compPath-filler p q (~ i) j))) k
          ; (z = i1)  compPath-filler p q k j
         })
         (compPath-filler p q (~ i  ~ z) j)


    cube-comp₋₀₋ :
        (c : I  I  I  A)
       {a' : Square _ _ _ _}
        i i₁  c i i0 i₁)  a'
       (I  I  I  A)
    cube-comp₋₀₋ c p i j k =
       hcomp
          l  λ {
            (i = i0)  c i0 j k
           ;(i = i1)  c i1 j k
           ;(j = i0)  p l i k
           ;(j = i1)  c i i1 k
           ;(k = i0)  c i j i0
           ;(k = i1)  c i j i1
          })
        (c i j k)

    cube-comp₀₋₋ :
        (c : I  I  I  A)
       {a' : Square _ _ _ _}
        i i₁  c i0 i i₁)  a'
       (I  I  I  A)
    cube-comp₀₋₋ c p i j k =
       hcomp
          l  λ {
            (i = i0)  p l j k
           ;(i = i1)  c i1 j k
           ;(j = i0)  c i i0 k
           ;(j = i1)  c i i1 k
           ;(k = i0)  c i j i0
           ;(k = i1)  c i j i1
          })
        (c i j k)



    lemma₁₀-back' : _
    lemma₁₀-back' k j i₁ =
       (cube-comp₋₀₋ (lemma₁₀-back)
         (compPath-filler-in-filler p q)) k j i₁


    lemma₁₀ : ( i j : I)  _  _
    lemma₁₀ i j i₁ =
        (cube-comp₀₋₋ lemma₁₀-front (sym lemma₁₀-back')) i j i₁