{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Sigma.Properties where
open import Cubical.Data.Sigma.Base
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.Relation.Nullary
open import Cubical.Data.Unit.Base
open import Cubical.Reflection.StrictEquiv
open Iso
private
variable
ℓ ℓ' ℓ'' : Level
A A' : Type ℓ
B B' : (a : A) → Type ℓ
C : (a : A) (b : B a) → Type ℓ
map-fst : {B : Type ℓ} → (f : A → A') → A × B → A' × B
map-fst f (a , b) = (f a , b)
map-snd : (∀ {a} → B a → B' a) → Σ A B → Σ A B'
map-snd f (a , b) = (a , f b)
map-× : {B : Type ℓ} {B' : Type ℓ'} → (A → A') → (B → B') → A × B → A' × B'
map-× f g (a , b) = (f a , g b)
≡-× : {A : Type ℓ} {B : Type ℓ'} {x y : A × B} → fst x ≡ fst y → snd x ≡ snd y → x ≡ y
≡-× p q i = (p i) , (q i)
module _ {A : I → Type ℓ} {B : (i : I) → A i → Type ℓ'}
{x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)}
where
ΣPathP : Σ[ p ∈ PathP A (fst x) (fst y) ] PathP (λ i → B i (p i)) (snd x) (snd y)
→ PathP (λ i → Σ (A i) (B i)) x y
ΣPathP eq i = fst eq i , snd eq i
PathPΣ : PathP (λ i → Σ (A i) (B i)) x y
→ Σ[ p ∈ PathP A (fst x) (fst y) ] PathP (λ i → B i (p i)) (snd x) (snd y)
PathPΣ eq = (λ i → fst (eq i)) , (λ i → snd (eq i))
module PathPΣ (p : PathP (λ i → Σ (A i) (B i)) x y) where
open Σ (PathPΣ p) public
ΣPathIsoPathΣ : Iso (Σ[ p ∈ PathP A (fst x) (fst y) ] (PathP (λ i → B i (p i)) (snd x) (snd y)))
(PathP (λ i → Σ (A i) (B i)) x y)
fun ΣPathIsoPathΣ = ΣPathP
inv ΣPathIsoPathΣ = PathPΣ
rightInv ΣPathIsoPathΣ _ = refl
leftInv ΣPathIsoPathΣ _ = refl
unquoteDecl ΣPath≃PathΣ = declStrictIsoToEquiv ΣPath≃PathΣ ΣPathIsoPathΣ
ΣPath≡PathΣ : (Σ[ p ∈ PathP A (fst x) (fst y) ] (PathP (λ i → B i (p i)) (snd x) (snd y)))
≡ (PathP (λ i → Σ (A i) (B i)) x y)
ΣPath≡PathΣ = ua ΣPath≃PathΣ
×≡Prop : isProp A' → {u v : A × A'} → u .fst ≡ v .fst → u ≡ v
×≡Prop pB {u} {v} p i = (p i) , (pB (u .snd) (v .snd) i)
module _ {A : I → Type ℓ} {B : (i : I) → (a : A i) → Type ℓ'}
{x : Σ (A i0) (B i0)} {y : Σ (A i1) (B i1)}
where
ΣPathPIsoPathPΣ :
Iso (Σ[ p ∈ PathP A (x .fst) (y .fst) ] PathP (λ i → B i (p i)) (x .snd) (y .snd))
(PathP (λ i → Σ (A i) (B i)) x y)
ΣPathPIsoPathPΣ .fun (p , q) i = p i , q i
ΣPathPIsoPathPΣ .inv pq .fst i = pq i .fst
ΣPathPIsoPathPΣ .inv pq .snd i = pq i .snd
ΣPathPIsoPathPΣ .rightInv _ = refl
ΣPathPIsoPathPΣ .leftInv _ = refl
unquoteDecl ΣPathP≃PathPΣ = declStrictIsoToEquiv ΣPathP≃PathPΣ ΣPathPIsoPathPΣ
ΣPathP≡PathPΣ = ua ΣPathP≃PathPΣ
discreteΣ : Discrete A → ((a : A) → Discrete (B a)) → Discrete (Σ A B)
discreteΣ {B = B} Adis Bdis (a0 , b0) (a1 , b1) = discreteΣ' (Adis a0 a1)
where
discreteΣ' : Dec (a0 ≡ a1) → Dec ((a0 , b0) ≡ (a1 , b1))
discreteΣ' (yes p) = J (λ a1 p → ∀ b1 → Dec ((a0 , b0) ≡ (a1 , b1))) (discreteΣ'') p b1
where
discreteΣ'' : (b1 : B a0) → Dec ((a0 , b0) ≡ (a0 , b1))
discreteΣ'' b1 with Bdis a0 b0 b1
... | (yes q) = yes (transport ΣPath≡PathΣ (refl , q))
... | (no ¬q) = no (λ r → ¬q (subst (λ X → PathP (λ i → B (X i)) b0 b1) (Discrete→isSet Adis a0 a0 (cong fst r) refl) (cong snd r)))
discreteΣ' (no ¬p) = no (λ r → ¬p (cong fst r))
module _ {A : Type ℓ} {A' : Type ℓ'} where
Σ-swap-Iso : Iso (A × A') (A' × A)
fun Σ-swap-Iso (x , y) = (y , x)
inv Σ-swap-Iso (x , y) = (y , x)
rightInv Σ-swap-Iso _ = refl
leftInv Σ-swap-Iso _ = refl
unquoteDecl Σ-swap-≃ = declStrictIsoToEquiv Σ-swap-≃ Σ-swap-Iso
module _ {A : Type ℓ} {B : A → Type ℓ'} {C : ∀ a → B a → Type ℓ''} where
Σ-assoc-Iso : Iso (Σ[ (a , b) ∈ Σ A B ] C a b) (Σ[ a ∈ A ] Σ[ b ∈ B a ] C a b)
fun Σ-assoc-Iso ((x , y) , z) = (x , (y , z))
inv Σ-assoc-Iso (x , (y , z)) = ((x , y) , z)
rightInv Σ-assoc-Iso _ = refl
leftInv Σ-assoc-Iso _ = refl
unquoteDecl Σ-assoc-≃ = declStrictIsoToEquiv Σ-assoc-≃ Σ-assoc-Iso
Σ-Π-Iso : Iso ((a : A) → Σ[ b ∈ B a ] C a b) (Σ[ f ∈ ((a : A) → B a) ] ∀ a → C a (f a))
fun Σ-Π-Iso f = (fst ∘ f , snd ∘ f)
inv Σ-Π-Iso (f , g) x = (f x , g x)
rightInv Σ-Π-Iso _ = refl
leftInv Σ-Π-Iso _ = refl
unquoteDecl Σ-Π-≃ = declStrictIsoToEquiv Σ-Π-≃ Σ-Π-Iso
Σ-cong-iso-fst : (isom : Iso A A') → Iso (Σ A (B ∘ fun isom)) (Σ A' B)
fun (Σ-cong-iso-fst isom) x = fun isom (x .fst) , x .snd
inv (Σ-cong-iso-fst {B = B} isom) x = inv isom (x .fst) , subst B (sym (ε (x .fst))) (x .snd)
where
ε = isHAEquiv.rinv (snd (iso→HAEquiv isom))
rightInv (Σ-cong-iso-fst {B = B} isom) (x , y) = ΣPathP (ε x , toPathP goal)
where
ε = isHAEquiv.rinv (snd (iso→HAEquiv isom))
goal : subst B (ε x) (subst B (sym (ε x)) y) ≡ y
goal = sym (substComposite B (sym (ε x)) (ε x) y)
∙∙ cong (λ x → subst B x y) (lCancel (ε x))
∙∙ substRefl {B = B} y
leftInv (Σ-cong-iso-fst {A = A} {B = B} isom) (x , y) = ΣPathP (leftInv isom x , toPathP goal)
where
ε = isHAEquiv.rinv (snd (iso→HAEquiv isom))
γ = isHAEquiv.com (snd (iso→HAEquiv isom))
lem : (x : A) → sym (ε (fun isom x)) ∙ cong (fun isom) (leftInv isom x) ≡ refl
lem x = cong (λ a → sym (ε (fun isom x)) ∙ a) (γ x) ∙ lCancel (ε (fun isom x))
goal : subst B (cong (fun isom) (leftInv isom x)) (subst B (sym (ε (fun isom x))) y) ≡ y
goal = sym (substComposite B (sym (ε (fun isom x))) (cong (fun isom) (leftInv isom x)) y)
∙∙ cong (λ a → subst B a y) (lem x)
∙∙ substRefl {B = B} y
Σ-cong-equiv-fst : (e : A ≃ A') → Σ A (B ∘ equivFun e) ≃ Σ A' B
Σ-cong-equiv-fst {A = A} {A' = A'} {B = B} e = intro , isEqIntro
where
intro : Σ A (B ∘ equivFun e) → Σ A' B
intro (a , b) = equivFun e a , b
isEqIntro : isEquiv intro
isEqIntro .equiv-proof x = ctr , isCtr where
PB : ∀ {x y} → x ≡ y → B x → B y → Type _
PB p = PathP (λ i → B (p i))
open Σ x renaming (fst to a'; snd to b)
open Σ (equivCtr e a') renaming (fst to ctrA; snd to α)
ctrB : B (equivFun e ctrA)
ctrB = subst B (sym α) b
ctrP : PB α ctrB b
ctrP = symP (transport-filler (λ i → B (sym α i)) b)
ctr : fiber intro x
ctr = (ctrA , ctrB) , ΣPathP (α , ctrP)
isCtr : ∀ y → ctr ≡ y
isCtr ((r , s) , p) = λ i → (a≡r i , b!≡s i) , ΣPathP (α≡ρ i , coh i) where
open PathPΣ p renaming (fst to ρ; snd to σ)
open PathPΣ (equivCtrPath e a' (r , ρ)) renaming (fst to a≡r; snd to α≡ρ)
b!≡s : PB (cong (equivFun e) a≡r) ctrB s
b!≡s i = comp (λ k → B (α≡ρ i (~ k))) (λ k → (λ
{ (i = i0) → ctrP (~ k)
; (i = i1) → σ (~ k)
})) b
coh : PathP (λ i → PB (α≡ρ i) (b!≡s i) b) ctrP σ
coh i j = fill (λ k → B (α≡ρ i (~ k))) (λ k → (λ
{ (i = i0) → ctrP (~ k)
; (i = i1) → σ (~ k)
})) (inS b) (~ j)
Σ-cong-fst : (p : A ≡ A') → Σ A (B ∘ transport p) ≡ Σ A' B
Σ-cong-fst {B = B} p i = Σ (p i) (B ∘ transp (λ j → p (i ∨ j)) i)
Σ-cong-iso-snd : ((x : A) → Iso (B x) (B' x)) → Iso (Σ A B) (Σ A B')
fun (Σ-cong-iso-snd isom) (x , y) = x , fun (isom x) y
inv (Σ-cong-iso-snd isom) (x , y') = x , inv (isom x) y'
rightInv (Σ-cong-iso-snd isom) (x , y) = ΣPathP (refl , rightInv (isom x) y)
leftInv (Σ-cong-iso-snd isom) (x , y') = ΣPathP (refl , leftInv (isom x) y')
Σ-cong-equiv-snd : (∀ a → B a ≃ B' a) → Σ A B ≃ Σ A B'
Σ-cong-equiv-snd h = isoToEquiv (Σ-cong-iso-snd (equivToIso ∘ h))
Σ-cong-snd : ((x : A) → B x ≡ B' x) → Σ A B ≡ Σ A B'
Σ-cong-snd {A = A} p i = Σ[ x ∈ A ] (p x i)
Σ-cong-iso : (isom : Iso A A')
→ ((x : A) → Iso (B x) (B' (fun isom x)))
→ Iso (Σ A B) (Σ A' B')
Σ-cong-iso isom isom' = compIso (Σ-cong-iso-snd isom') (Σ-cong-iso-fst isom)
Σ-cong-equiv : (e : A ≃ A')
→ ((x : A) → B x ≃ B' (equivFun e x))
→ Σ A B ≃ Σ A' B'
Σ-cong-equiv e e' = isoToEquiv (Σ-cong-iso (equivToIso e) (equivToIso ∘ e'))
Σ-cong' : (p : A ≡ A') → PathP (λ i → p i → Type ℓ') B B' → Σ A B ≡ Σ A' B'
Σ-cong' p p' = cong₂ (λ (A : Type _) (B : A → Type _) → Σ A B) p p'
ΣPathTransport : (a b : Σ A B) → Type _
ΣPathTransport {B = B} a b = Σ[ p ∈ (fst a ≡ fst b) ] transport (λ i → B (p i)) (snd a) ≡ snd b
IsoΣPathTransportPathΣ : (a b : Σ A B) → Iso (ΣPathTransport a b) (a ≡ b)
IsoΣPathTransportPathΣ {B = B} a b =
compIso (Σ-cong-iso-snd (λ p → invIso (PathPIsoPath (λ i → B (p i)) _ _)))
ΣPathIsoPathΣ
ΣPathTransport≃PathΣ : (a b : Σ A B) → ΣPathTransport a b ≃ (a ≡ b)
ΣPathTransport≃PathΣ {B = B} a b = isoToEquiv (IsoΣPathTransportPathΣ a b)
ΣPathTransport→PathΣ : (a b : Σ A B) → ΣPathTransport a b → (a ≡ b)
ΣPathTransport→PathΣ a b = Iso.fun (IsoΣPathTransportPathΣ a b)
PathΣ→ΣPathTransport : (a b : Σ A B) → (a ≡ b) → ΣPathTransport a b
PathΣ→ΣPathTransport a b = Iso.inv (IsoΣPathTransportPathΣ a b)
ΣPathTransport≡PathΣ : (a b : Σ A B) → ΣPathTransport a b ≡ (a ≡ b)
ΣPathTransport≡PathΣ a b = ua (ΣPathTransport≃PathΣ a b)
Σ-contractFst : (c : isContr A) → Σ A B ≃ B (c .fst)
Σ-contractFst {B = B} c = isoToEquiv isom
where
isom : Iso _ _
isom .fun (a , b) = subst B (sym (c .snd a)) b
isom .inv b = (c .fst , b)
isom .rightInv b =
cong (λ p → subst B p b) (isProp→isSet (isContr→isProp c) _ _ _ _) ∙ transportRefl _
isom .leftInv (a , b) =
ΣPathTransport≃PathΣ _ _ .fst (c .snd a , transportTransport⁻ (cong B (c .snd a)) _)
module _ (A : Unit → Type ℓ) where
ΣUnit : Σ Unit A ≃ A tt
unquoteDef ΣUnit = defStrictEquiv ΣUnit snd (λ { x → (tt , x) })
Σ-contractSnd : ((a : A) → isContr (B a)) → Σ A B ≃ A
Σ-contractSnd c = isoToEquiv isom
where
isom : Iso _ _
isom .fun = fst
isom .inv a = a , c a .fst
isom .rightInv _ = refl
isom .leftInv (a , b) = cong (a ,_) (c a .snd b)
isEmbeddingFstΣProp : ((x : A) → isProp (B x))
→ {u v : Σ A B}
→ isEquiv (λ (p : u ≡ v) → cong fst p)
isEmbeddingFstΣProp {B = B} pB {u = u} {v = v} .equiv-proof x = ctr , isCtr
where
ctrP : u ≡ v
ctrP = ΣPathP (x , isProp→PathP (λ _ → pB _) _ _)
ctr : fiber (λ (p : u ≡ v) → cong fst p) x
ctr = ctrP , refl
isCtr : ∀ z → ctr ≡ z
isCtr (z , p) = ΣPathP (ctrP≡ , cong (sym ∘ snd) fzsingl) where
fzsingl : Path (singl x) (x , refl) (cong fst z , sym p)
fzsingl = isContrSingl x .snd (cong fst z , sym p)
ctrSnd : SquareP (λ i j → B (fzsingl i .fst j)) (cong snd ctrP) (cong snd z) _ _
ctrSnd = isProp→SquareP (λ _ _ → pB _) _ _ _ _
ctrP≡ : ctrP ≡ z
ctrP≡ i = ΣPathP (fzsingl i .fst , ctrSnd i)
Σ≡PropEquiv : ((x : A) → isProp (B x)) → {u v : Σ A B}
→ (u .fst ≡ v .fst) ≃ (u ≡ v)
Σ≡PropEquiv pB = invEquiv (_ , isEmbeddingFstΣProp pB)
Σ≡Prop : ((x : A) → isProp (B x)) → {u v : Σ A B}
→ (p : u .fst ≡ v .fst) → u ≡ v
Σ≡Prop pB p = equivFun (Σ≡PropEquiv pB) p
≃-× : ∀ {ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''} → A ≃ C → B ≃ D → A × B ≃ C × D
≃-× eq1 eq2 =
map-× (fst eq1) (fst eq2)
, record
{ equiv-proof
= λ {(c , d) → ((eq1⁻ c .fst .fst
, eq2⁻ d .fst .fst)
, ≡-× (eq1⁻ c .fst .snd)
(eq2⁻ d .fst .snd))
, λ {((a , b) , p) → ΣPathP (≡-× (cong fst (eq1⁻ c .snd (a , cong fst p)))
(cong fst (eq2⁻ d .snd (b , cong snd p)))
, λ i → ≡-× (snd ((eq1⁻ c .snd (a , cong fst p)) i))
(snd ((eq2⁻ d .snd (b , cong snd p)) i)))}}}
where
eq1⁻ = equiv-proof (eq1 .snd)
eq2⁻ = equiv-proof (eq2 .snd)
prodIso : ∀ {ℓ ℓ' ℓ'' ℓ'''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} {D : Type ℓ'''}
→ Iso A C
→ Iso B D
→ Iso (A × B) (C × D)
Iso.fun (prodIso iAC iBD) (a , b) = (Iso.fun iAC a) , Iso.fun iBD b
Iso.inv (prodIso iAC iBD) (c , d) = (Iso.inv iAC c) , Iso.inv iBD d
Iso.rightInv (prodIso iAC iBD) (c , d) = ΣPathP ((Iso.rightInv iAC c) , (Iso.rightInv iBD d))
Iso.leftInv (prodIso iAC iBD) (a , b) = ΣPathP ((Iso.leftInv iAC a) , (Iso.leftInv iBD b))
toProdIso : {B C : A → Type ℓ}
→ Iso ((a : A) → B a × C a) (((a : A) → B a) × ((a : A) → C a))
Iso.fun toProdIso = λ f → (λ a → fst (f a)) , (λ a → snd (f a))
Iso.inv toProdIso (f , g) = λ a → (f a) , (g a)
Iso.rightInv toProdIso (f , g) = refl
Iso.leftInv toProdIso b = refl
module _ {A : Type ℓ} {B : A → Type ℓ'} {C : ∀ a → B a → Type ℓ''} where
curryIso : Iso (((a , b) : Σ A B) → C a b) ((a : A) → (b : B a) → C a b)
Iso.fun curryIso f a b = f (a , b)
Iso.inv curryIso f a = f (fst a) (snd a)
Iso.rightInv curryIso a = refl
Iso.leftInv curryIso f = refl
unquoteDecl curryEquiv = declStrictIsoToEquiv curryEquiv curryIso