{-# OPTIONS --cubical --safe #-}
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Relation.Nullary
module Abstract.Arithmetic
{i j k}
{A : Type i}
(_<_ : A → A → Type j)
(_≤_ : A → A → Type k)
where
open import Abstract.ZerSucLim _<_ _≤_
is-add : (A → A → A) → Type _
is-add _+_ =
(∀ a c → is-zero a → c + a ≡ c) ×
(∀ a b c d → a is-suc-of b → d is-suc-of (c + b) → c + a ≡ d) ×
(∀ a b c f f↑ → a is-lim-of (f , f↑) → b is-sup-of (λ i → c + f i) → c + a ≡ b)
has-add : Type _
has-add = Σ[ f ∈ (A → A → A) ] is-add f
has-unique-add : Type _
has-unique-add = isContr has-add
isProp⟨is-add⟩ : isSet A → ∀ f → isProp (is-add f)
isProp⟨is-add⟩ isSet⟨A⟩ _ = isProp×2 (isPropΠ3 λ _ _ _ → isSet⟨A⟩ _ _)
(isPropΠ2 λ _ _ → isPropΠ4 λ _ _ _ _ → isSet⟨A⟩ _ _)
(isPropΠ3 λ _ _ _ → isPropΠ4 λ _ _ _ _ → isSet⟨A⟩ _ _)
module Multiplication
(add : has-add)
where
_+_ : A → A → A
_+_ = fst add
is-mul : (A → A → A) → Type _
is-mul _·_ =
(∀ a c → is-zero a → c · a ≡ a) ×
(∀ a b c → a is-suc-of b → c · a ≡ (c · b) + c) ×
(∀ a b c f f↑ → a is-lim-of (f , f↑) → b is-sup-of (λ i → c · f i) → c · a ≡ b)
has-mul : Type _
has-mul = Σ[ f ∈ (A → A → A) ] is-mul f
has-unique-mul : Type _
has-unique-mul = isContr has-mul
isProp⟨is-mul⟩ : isSet A → ∀ f → isProp (is-mul f)
isProp⟨is-mul⟩ isSet⟨A⟩ _ = isProp×2 (isPropΠ3 λ _ _ _ → isSet⟨A⟩ _ _)
(isPropΠ4 λ _ _ _ _ → isSet⟨A⟩ _ _)
(isPropΠ3 λ _ _ _ → isPropΠ4 λ _ _ _ _ → isSet⟨A⟩ _ _)
module Exponentiation
(add : has-add)
(mul : Multiplication.has-mul add)
where
_·_ : A → A → A
_·_ = fst mul
_is-exp-with-base_ : (A → A) → A → Type _
c^_ is-exp-with-base c =
(∀ a b → is-zero a → b is-suc-of a → c^ a ≡ b) ×
(∀ a b → a is-suc-of b → c^ a ≡ (c^ b) · c) ×
(∀ a b f f↑ → a is-lim-of (f , f↑) → ¬ is-zero c → b is-sup-of (λ i → c^ f i) → c^ a ≡ b) ×
(∀ a f f↑ → a is-lim-of (f , f↑) → is-zero c → c^ a ≡ c)
has-exp-with-base : A → Type _
has-exp-with-base c = Σ[ f ∈ (A → A) ] f is-exp-with-base c
has-unique-exp-with-base : A → Type _
has-unique-exp-with-base c = isContr (has-exp-with-base c)
has-unique-exp : Type _
has-unique-exp = ∀ c → has-unique-exp-with-base c
isProp⟨is-exp⟩ : isSet A → ∀ c f → isProp (f is-exp-with-base c)
isProp⟨is-exp⟩ isSet⟨A⟩ _ _ = isProp×3 (isPropΠ4 λ _ _ _ _ → isSet⟨A⟩ _ _)
(isPropΠ3 λ _ _ _ → isSet⟨A⟩ _ _)
(isPropΠ3 λ _ _ _ → isPropΠ4 λ _ _ _ _ → isSet⟨A⟩ _ _)
(isPropΠ3 λ _ _ _ → isPropΠ2 λ _ _ → isSet⟨A⟩ _ _)
module Subtraction
(add : has-add)
where
_+_ : A → A → A
_+_ = fst add
is-sub : ((b a : A) → a ≤ b → A) → Type _
is-sub _-_[_] = ∀ b a → (p : a ≤ b) → a + (b - a [ p ]) ≡ b
has-sub : Type _
has-sub = Σ[ f ∈ ((b a : A) → a ≤ b → A) ] is-sub f
has-unique-sub : Type _
has-unique-sub = isContr has-sub
isProp⟨is-sub⟩ : isSet A → ∀ f → isProp (is-sub f)
isProp⟨is-sub⟩ isSet⟨A⟩ _ = isPropΠ3 λ _ _ _ → isSet⟨A⟩ _ _