----------------------------------------------------------------------------------------------------
-- An alternative definition of Brouwer trees
----------------------------------------------------------------------------------------------------

{-# OPTIONS --cubical #-}

{- This file presents an alternative definition of Brouwer trees.
   The difference to our main definition of Brouwer trees is:
   * The main definition uses a constructors
     `bisim` and `trunc` which ensure that weakly bisimilar
     sequences have equal limits, and that the type of
     Brouwer trees is a set.
   * This alternative definition instead directly uses a
     constructor `antisym`.
   Here, we show that the two definitions are equivalent.
-}

module BrouwerTree.AlternativeDefinition where

open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function

open import Cubical.Data.Nat
open import Cubical.Data.Sigma

open import Cubical.Relation.Nullary

open import Cubical.HITs.PropositionalTruncation.Properties
  renaming (rec to ∥-∥rec)

open import BrouwerTree.Base
open import BrouwerTree.Properties
open import BrouwerTree.Code
open import BrouwerTree.Code.Results

{- The alternative definition -}

mutual
  data Brw' : Type where
    zero'    : Brw'
    succ'    : Brw' -> Brw'
    limit'   : (f :  -> Brw') {f↑ : increasing' f} -> Brw'
    antisym' :  {x y} -> x ≤' y -> y ≤' x -> x  y

  data _≤'_ : Brw' -> Brw' -> Type where
    ≤-zero'    :  {x}  zero' ≤' x
    ≤-trans'   :  {x y z} -> x ≤' y -> y ≤' z -> x ≤' z
    succ-mono' :  {x y} -> x ≤' y -> succ' x ≤' succ' y
    cocone'    :  f {f↑} k {x} -> x ≤' f k -> x ≤' limit' f {f↑}
    limiting'  :  f {f↑ x} -> ((k : ) -> f k ≤' x) -> limit' f {f↑} ≤' x
    ≤-trunc'   :  {x y} -> isProp (x ≤' y)

  _<'_ : Brw' -> Brw' -> Type
  x <' y = succ' x ≤' y

  increasing' : (  Brw') -> Type
  increasing' f =  k  f k <' f (suc k)

Brw'-ind :  {a} 
             (P : Brw'  Type a) 
             (P-prop : (x : Brw')  isProp (P x)) 
             (z : P zero') 
             (s : {x : Brw'}  P x  P (succ' x)) 
             (l :  {f f↑}  ((k : )  P (f k))  P (limit' f {f↑})) 
             (x : Brw')  P x
Brw'-ind P isProp⟨P⟩ z s l zero' = z
Brw'-ind P isProp⟨P⟩ z s l (succ' x) = s (Brw'-ind P isProp⟨P⟩ z s l x)
Brw'-ind P isProp⟨P⟩ z s l (limit' f {f↑}) = l λ k  Brw'-ind P isProp⟨P⟩ z s l (f k)
Brw'-ind P isProp⟨P⟩ z s l (antisym' {x} {y} p q i) =
  isProp→PathP  j  isProp⟨P⟩ (antisym' p q j))
               (Brw'-ind P isProp⟨P⟩ z s l x)
               (Brw'-ind P isProp⟨P⟩ z s l y) i

≤'-refl :  {x}  x ≤' x
≤'-refl {zero'} = ≤-zero'
≤'-refl {succ' x} = succ-mono' (≤'-refl {x})
≤'-refl {limit' f {f↑}} = limiting' f {f↑} λ k  cocone' f {f↑} k {f k} (≤'-refl {f k})
≤'-refl {antisym' {x} {y} p q i} =
  isProp→PathP {B = λ i  antisym' p q i ≤' antisym' p q i}
                _  ≤-trunc')
               (≤'-refl {x})
               (≤'-refl {y}) i

≤'-refl-≡ :  {x y}  x  y  x ≤' y
≤'-refl-≡ {x} {y} x≡y = subst  z  z ≤' y) (sym x≡y) ≤'-refl

Brw'-hSeparated : HSeparated Brw'
Brw'-hSeparated x y ∣x≡y∣ = antisym' x≤y y≤x
  where
  x≤y×y≤x =
    ∥-∥rec
      (isProp× ≤-trunc' ≤-trunc')
       x≡y  subst  z  x ≤' z) x≡y ≤'-refl , subst  z  z ≤' x) x≡y ≤'-refl)
      ∣x≡y∣
  x≤y = fst x≤y×y≤x
  y≤x = snd x≤y×y≤x

Brw'-is-set : isSet Brw'
Brw'-is-set = HSeparated→isSet Brw'-hSeparated


open import Simulations Brw' _≤'_
  renaming (_simulated-by_ to _≲'_ ; _bisimilar-to_ to _≈'_)

bisim→≤' :  {f f↑ g g↑}  f ≲' g  limit' f {f↑} ≤' limit' g {g↑}
bisim→≤' {f} {f↑} {g} {g↑} f≲g =
  limiting' f {x = limit' g}  k  ∥-∥rec {A = Σ[ n   ] f k ≤' g n}
                                           {P = f k ≤' limit' g}
                                           ≤-trunc'
                                            {(n , fk≤'gn)  cocone' g n {f k} fk≤'gn})
                                           (f≲g k))

bisim' :  {f f↑ g g↑}  f ≈' g  limit' f {f↑}  limit' g {g↑}
bisim' {f} {f↑} {g} {g↑} (f≲'g , g≲'f) = antisym' (bisim→≤' f≲'g) (bisim→≤' g≲'f)

{- Maps back and forth -}

mutual
  Brw→Brw' : Brw  Brw'
  Brw→Brw' zero = zero'
  Brw→Brw' (succ x) = succ' (Brw→Brw' x)
  Brw→Brw' (limit f {f↑}) = limit' (Brw→Brw'  f)
                                    k  Brw→Brw'-mono {succ (f k)} {f (suc k)} (f↑ k)}
  Brw→Brw' (bisim f {f↑} g {g↑} (f≲g , g≲f) i) =
    bisim' {f↑ = λ k  Brw→Brw'-mono {succ (f k)} {f (suc k)} (f↑ k)}
           {g↑ = λ k  Brw→Brw'-mono {succ (g k)} {g (suc k)} (g↑ k)}
           (Brw→Brw'-pres-bisim f≲g  , Brw→Brw'-pres-bisim g≲f) i
  Brw→Brw' (trunc x y p q i j) = isSet→SquareP {A = λ _ _  Brw'}  _ _  Brw'-is-set)
                                                 j  Brw→Brw' (p j))
                                                 j  Brw→Brw' (q j))
                                                refl
                                                refl i j

  Brw→Brw'-mono :  {x y}  x  y  (Brw→Brw' x ≤' Brw→Brw' y)
  Brw→Brw'-mono {.zero} {y} ≤-zero = ≤-zero'
  Brw→Brw'-mono (≤-trans {x} {y} {z} x≤y y≤z) = ≤-trans' (Brw→Brw'-mono x≤y) (Brw→Brw'-mono y≤z)
  Brw→Brw'-mono {.(succ x)} {.(succ y)} (≤-succ-mono {x} {y} x≤y) = succ-mono' (Brw→Brw'-mono x≤y)
  Brw→Brw'-mono {x} {.(limit f)} (≤-cocone f {k = k} x≤y) = cocone' (Brw→Brw'  f) k
                                                                    (Brw→Brw'-mono x≤y)
  Brw→Brw'-mono {.(limit f)} {y} (≤-limiting f f≤y) = limiting' (Brw→Brw'  f) (Brw→Brw'-mono  f≤y)
  Brw→Brw'-mono {x} {y} (≤-trunc p q i) = ≤-trunc' (Brw→Brw'-mono p) (Brw→Brw'-mono q) i

  -- Agda does not see that the recursive call on `fk≤gn` is structurally smaller,
  -- because it has been uncovered under the propositional truncation. In the
  -- "official" induction principle, we instead get a family of truncated inductive hypothesis,
  -- and here we can uncover the k-th one because we are proving a proposition.
  -- To work around this, we mark the definition as terminating.
  {-# TERMINATING #-}
  Brw→Brw'-pres-bisim :  {f g}  f  g  (Brw→Brw'  f) ≲' (Brw→Brw'  g)
  Brw→Brw'-pres-bisim {f} {g} f≲g =
    λ k  ∥-∥rec {A = Σ[ n   ] f k  g n}
                 {P = ∃[ n   ] Brw→Brw' (f k) ≤' Brw→Brw' (g n)}
                 propTruncIsProp
                  {(n , fk≤gn)  (n , Brw→Brw'-mono fk≤gn)})
                 (f≲g k)

mutual
  Brw'→Brw : Brw'  Brw
  Brw'→Brw zero' = zero
  Brw'→Brw (succ' x) = succ (Brw'→Brw x)
  Brw'→Brw (limit' f {f↑}) = limit  n  Brw'→Brw (f n))  k  Brw'→Brw-mono (f↑ k)}
  Brw'→Brw (antisym' p q i) = ≤-antisym (Brw'→Brw-mono p) (Brw'→Brw-mono q) i

  -- At the time of writing this code, Agda issue #4725 means that the
  -- following definition is not seen as terminating, because the "dot
  -- patterns" have been moved from the implicit x and y to the
  -- smaller arguments of the proof x ≤' y, and --cubical does not
  -- take decrease in dot patterns into account for termination
  -- checking. This would be okay for us, if only the dot patterns
  -- were reconstructed as written! Issue #4725 is that they are not,
  -- and to work around this bug, we mark the definition as
  -- terminating.
  {-# TERMINATING #-}
  Brw'→Brw-mono :  {x y}  x ≤' y  (Brw'→Brw x  Brw'→Brw y)
  Brw'→Brw-mono ≤-zero' = ≤-zero
  Brw'→Brw-mono (≤-trans' x≤z z≤y) = ≤-trans (Brw'→Brw-mono x≤z) (Brw'→Brw-mono z≤y)
  Brw'→Brw-mono (succ-mono' x≤y) = ≤-succ-mono (Brw'→Brw-mono x≤y)
  Brw'→Brw-mono (cocone' f k x≤fk) = ≤-cocone  n  Brw'→Brw (f n)) {k = k} (Brw'→Brw-mono x≤fk)
  Brw'→Brw-mono (limiting' f f≤y) = ≤-limiting  n  Brw'→Brw (f n))  k  Brw'→Brw-mono (f≤y k))
  Brw'→Brw-mono (≤-trunc' p q i) = ≤-trunc (Brw'→Brw-mono p) (Brw'→Brw-mono q) i

{- Identities are straightforward. -}

right-identity : (x : Brw')  Brw→Brw' (Brw'→Brw x)  x
right-identity = Brw'-ind  x  Brw→Brw' (Brw'→Brw x)  x)
                           c  Brw'-is-set _ _)
                          refl
                           {x} ih  cong succ' ih)
                           {f} {f↑} ih  bisim' ((λ k   k , ≤'-refl-≡ (ih k) ) ,
                                                    k   k , ≤'-refl-≡ (sym (ih k)) )))

left-identity : (x : Brw)  Brw'→Brw (Brw→Brw' x)  x
left-identity = Brw-ind  x  Brw'→Brw (Brw→Brw' x)  x)
                         c  Brw-is-set _ _)
                        refl
                         {x} ih  cong succ ih)
                         {f} {f↑} ih  bisim  n  Brw'→Brw (Brw→Brw' (f n))) f
                                               ((λ k   k , ≤-refl-≡ (ih k) ) ,
                                                 k   k , ≤-refl-≡ (sym (ih k)) )))

{- Hence Brw and Brw' are equivalent. -}

Brw≃Brw' : Brw  Brw'
Brw≃Brw' = isoToEquiv (iso Brw→Brw'  Brw'→Brw right-identity left-identity)