{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Nullary.Product where
open import Data.Bool.Base
open import Data.Product
open import Function.Base using (_∘_)
open import Level
open import Relation.Nullary.Reflects
open import Relation.Nullary
private
variable
p q : Level
P : Set p
Q : Set q
infixr 2 _×-reflects_ _×-dec_
_×-reflects_ : ∀ {bp bq} → Reflects P bp → Reflects Q bq →
Reflects (P × Q) (bp ∧ bq)
ofʸ p ×-reflects ofʸ q = ofʸ (p , q)
ofʸ p ×-reflects ofⁿ ¬q = ofⁿ (¬q ∘ proj₂)
ofⁿ ¬p ×-reflects _ = ofⁿ (¬p ∘ proj₁)
_×-dec_ : Dec P → Dec Q → Dec (P × Q)
does (p? ×-dec q?) = does p? ∧ does q?
proof (p? ×-dec q?) = proof p? ×-reflects proof q?