{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Nullary.Decidable where
open import Level using (Level)
open import Data.Bool.Base using (true; false)
open import Data.Empty using (⊥-elim)
open import Function.Base
open import Function.Equality using (_⟨$⟩_; module Π)
open import Function using (_↔_; mk↔′)
open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)
open import Function.Injection using (Injection; module Injection)
open import Relation.Binary using (Setoid; module Setoid; Decidable)
open import Relation.Nullary
open import Relation.Nullary.Reflects using (invert)
open import Relation.Binary.PropositionalEquality using (cong′)
private
variable
p q : Level
P : Set p
Q : Set q
open import Relation.Nullary.Decidable.Core public
map : P ⇔ Q → Dec P → Dec Q
map P⇔Q = map′ (to ⟨$⟩_) (from ⟨$⟩_)
where open Equivalence P⇔Q
module _ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂}
(inj : Injection A B)
where
open Injection inj
open Setoid A using () renaming (_≈_ to _≈A_)
open Setoid B using () renaming (_≈_ to _≈B_)
via-injection : Decidable _≈B_ → Decidable _≈A_
via-injection dec x y =
map′ injective (Π.cong to) (dec (to ⟨$⟩ x) (to ⟨$⟩ y))
True-↔ : (dec : Dec P) → Irrelevant P → True dec ↔ P
True-↔ (true because [p]) irr = mk↔′ (λ _ → invert [p]) _ (irr (invert [p])) cong′
True-↔ (false because ofⁿ ¬p) _ = mk↔′ (λ ()) (invert (ofⁿ ¬p)) (⊥-elim ∘ ¬p) λ ()