------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for "equational reasoning" using a preorder ------------------------------------------------------------------------ -- Example uses: -- -- u∼y : u ∼ y -- u∼y = begin -- u ≈⟨ u≈v ⟩ -- v ≡⟨ v≡w ⟩ -- w ∼⟨ w∼y ⟩ -- y ≈⟨ z≈y ⟩ -- z ∎ -- -- u≈w : u ≈ w -- u≈w = begin-equality -- u ≈⟨ u≈v ⟩ -- v ≡⟨ v≡w ⟩ -- w ≡˘⟨ x≡w ⟩ -- x ∎ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary module Relation.Binary.Reasoning.Preorder {p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where open Preorder P ------------------------------------------------------------------------ -- Publicly re-export the contents of the base module open import Relation.Binary.Reasoning.Base.Double isPreorder public ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.0 infixr 2 _≈⟨⟩_ _≈⟨⟩_ = _≡⟨⟩_ {-# WARNING_ON_USAGE _≈⟨⟩_ "Warning: _≈⟨⟩_ was deprecated in v1.0. Please use _≡⟨⟩_ instead." #-}