{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary
module Function.Structures {a b ℓ₁ ℓ₂}
{A : Set a} (_≈₁_ : Rel A ℓ₁)
{B : Set b} (_≈₂_ : Rel B ℓ₂)
where
open import Data.Product using (∃; _×_; _,_)
open import Function.Base
open import Function.Definitions
open import Level using (_⊔_)
record IsCongruent (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
cong : Congruent _≈₁_ _≈₂_ f
isEquivalence₁ : IsEquivalence _≈₁_
isEquivalence₂ : IsEquivalence _≈₂_
module Eq₁ where
setoid : Setoid a ℓ₁
setoid = record
{ isEquivalence = isEquivalence₁
}
open Setoid setoid public
module Eq₂ where
setoid : Setoid b ℓ₂
setoid = record
{ isEquivalence = isEquivalence₂
}
open Setoid setoid public
record IsInjection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isCongruent : IsCongruent f
injective : Injective _≈₁_ _≈₂_ f
open IsCongruent isCongruent public
record IsSurjection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isCongruent : IsCongruent f
surjective : Surjective _≈₁_ _≈₂_ f
open IsCongruent isCongruent public
record IsBijection (f : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isInjection : IsInjection f
surjective : Surjective _≈₁_ _≈₂_ f
open IsInjection isInjection public
bijective : Bijective _≈₁_ _≈₂_ f
bijective = injective , surjective
isSurjection : IsSurjection f
isSurjection = record
{ isCongruent = isCongruent
; surjective = surjective
}
record IsLeftInverse (f : A → B) (g : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isCongruent : IsCongruent f
cong₂ : Congruent _≈₂_ _≈₁_ g
inverseˡ : Inverseˡ _≈₁_ _≈₂_ f g
open IsCongruent isCongruent public
renaming (cong to cong₁)
record IsRightInverse (f : A → B) (g : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isCongruent : IsCongruent f
cong₂ : Congruent _≈₂_ _≈₁_ g
inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g
open IsCongruent isCongruent public
renaming (cong to cong₁)
record IsInverse (f : A → B) (g : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
isLeftInverse : IsLeftInverse f g
inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g
open IsLeftInverse isLeftInverse public
isRightInverse : IsRightInverse f g
isRightInverse = record
{ isCongruent = isCongruent
; cong₂ = cong₂
; inverseʳ = inverseʳ
}
inverse : Inverseᵇ _≈₁_ _≈₂_ f g
inverse = inverseˡ , inverseʳ
record IsBiEquivalence
(f : A → B) (g₁ : B → A) (g₂ : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f-isCongruent : IsCongruent f
cong₂ : Congruent _≈₂_ _≈₁_ g₁
cong₃ : Congruent _≈₂_ _≈₁_ g₂
open IsCongruent f-isCongruent public
renaming (cong to cong₁)
record IsBiInverse
(f : A → B) (g₁ : B → A) (g₂ : B → A) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
field
f-isCongruent : IsCongruent f
cong₂ : Congruent _≈₂_ _≈₁_ g₁
inverseˡ : Inverseˡ _≈₁_ _≈₂_ f g₁
cong₃ : Congruent _≈₂_ _≈₁_ g₂
inverseʳ : Inverseʳ _≈₁_ _≈₂_ f g₂
open IsCongruent f-isCongruent public
renaming (cong to cong₁)