{- This file contains: - Definition of set truncations -} {-# OPTIONS --safe #-} module Cubical.HITs.SetTruncation.Base where open import Cubical.Core.Primitives open import Cubical.Foundations.Pointed -- set truncation as a higher inductive type: data ∥_∥₂ {ℓ} (A : Type ℓ) : Type ℓ where ∣_∣₂ : A → ∥ A ∥₂ squash₂ : ∀ (x y : ∥ A ∥₂) (p q : x ≡ y) → p ≡ q -- Pointed version ∥_∥₂∙ : ∀ {ℓ} (A : Pointed ℓ) → Pointed ℓ fst ∥ A ∥₂∙ = ∥ fst A ∥₂ snd ∥ A ∥₂∙ = ∣ pt A ∣₂