{-# OPTIONS --safe #-}
module Cubical.Foundations.Equiv.Fiberwise where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' ℓ'' : Level
module _ {A : Type ℓ} (P : A → Type ℓ') (Q : A → Type ℓ'')
(f : ∀ x → P x → Q x)
where
private
total : (Σ A P) → (Σ A Q)
total = (\ p → p .fst , f (p .fst) (p .snd))
fibers-total : ∀ {xv} → Iso (fiber total (xv)) (fiber (f (xv .fst)) (xv .snd))
fibers-total {xv} = iso h g h-g g-h
where
h : ∀ {xv} → fiber total xv → fiber (f (xv .fst)) (xv .snd)
h {xv} (p , eq) = J (\ xv eq → fiber (f (xv .fst)) (xv .snd)) ((p .snd) , refl) eq
g : ∀ {xv} → fiber (f (xv .fst)) (xv .snd) → fiber total xv
g {xv} (p , eq) = (xv .fst , p) , (\ i → _ , eq i)
h-g : ∀ {xv} y → h {xv} (g {xv} y) ≡ y
h-g {x , v} (p , eq) = J (λ _ eq₁ → h (g (p , eq₁)) ≡ (p , eq₁)) (JRefl (λ xv₁ eq₁ → fiber (f (xv₁ .fst)) (xv₁ .snd)) ((p , refl))) (eq)
g-h : ∀ {xv} y → g {xv} (h {xv} y) ≡ y
g-h {xv} ((a , p) , eq) = J (λ _ eq₁ → g (h ((a , p) , eq₁)) ≡ ((a , p) , eq₁))
(cong g (JRefl (λ xv₁ eq₁ → fiber (f (xv₁ .fst)) (xv₁ .snd)) (p , refl)))
eq
fiberEquiv : ([tf] : isEquiv total)
→ ∀ x → isEquiv (f x)
fiberEquiv [tf] x .equiv-proof y = isContrRetract (fibers-total .Iso.inv) (fibers-total .Iso.fun) (fibers-total .Iso.rightInv)
([tf] .equiv-proof (x , y))
totalEquiv : (fx-equiv : ∀ x → isEquiv (f x))
→ isEquiv total
totalEquiv fx-equiv .equiv-proof (x , v) = isContrRetract (fibers-total .Iso.fun) (fibers-total .Iso.inv) (fibers-total .Iso.leftInv)
(fx-equiv x .equiv-proof v)
module _ {U : Type ℓ} (_~_ : U → U → Type ℓ')
(idTo~ : ∀ {A B} → A ≡ B → A ~ B)
(c : ∀ A → ∃![ X ∈ U ] (A ~ X))
where
isContrToUniv : ∀ {A B} → isEquiv (idTo~ {A} {B})
isContrToUniv {A} {B}
= fiberEquiv (λ z → A ≡ z) (λ z → A ~ z) (\ B → idTo~ {A} {B})
(λ { .equiv-proof y
→ isContrΣ (isContrSingl _)
\ a → isContr→isContrPath (c A) _ _
})
B
recognizeId : {A : Type ℓ} {a : A} (Eq : A → Type ℓ')
→ Eq a
→ isContr (Σ _ Eq)
→ (x : A) → (a ≡ x) ≃ (Eq x)
recognizeId {A = A} {a = a} Eq eqRefl eqContr x = (fiberMap x) , (isEquivFiberMap x)
where
fiberMap : (x : A) → a ≡ x → Eq x
fiberMap x = J (λ x p → Eq x) eqRefl
mapOnSigma : Σ[ x ∈ A ] a ≡ x → Σ _ Eq
mapOnSigma pair = fst pair , fiberMap (fst pair) (snd pair)
equivOnSigma : (x : A) → isEquiv mapOnSigma
equivOnSigma x = isEquivFromIsContr mapOnSigma (isContrSingl a) eqContr
isEquivFiberMap : (x : A) → isEquiv (fiberMap x)
isEquivFiberMap = fiberEquiv (λ x → a ≡ x) Eq fiberMap (equivOnSigma x)
fundamentalTheoremOfId : {A : Type ℓ} (Eq : A → A → Type ℓ')
→ ((x : A) → Eq x x)
→ ((x : A) → isContr (Σ[ y ∈ A ] Eq x y))
→ (x y : A) → (x ≡ y) ≃ (Eq x y)
fundamentalTheoremOfId Eq eqRefl eqContr x = recognizeId (Eq x) (eqRefl x) (eqContr x)
fundamentalTheoremOfIdβ :
{A : Type ℓ} (Eq : A → A → Type ℓ')
→ (eqRefl : (x : A) → Eq x x)
→ (eqContr : (x : A) → isContr (Σ[ y ∈ A ] Eq x y))
→ (x : A)
→ fst (fundamentalTheoremOfId Eq eqRefl eqContr x x) refl ≡ eqRefl x
fundamentalTheoremOfIdβ Eq eqRefl eqContr x = JRefl (λ y p → Eq x y) (eqRefl x)