-------------------------------------------------------------
- Three equivalent ordinal notation systems in Cubical Agda -
-------------------------------------------------------------
§2 Cubical Agda
In the paper we give a brief introduction to Cubical Agda.
In this module, we import from the cubical library only what are needed
in our development. We redefine some necessary data types because
using the standard library may cause problems in the cubical mode, and
the cubical library construct and name some data types differently from
those in the standard library.
\begin{code}
{-# OPTIONS --cubical --safe #-}
open import Agda.Primitive public
using ( Level
; lsuc
; _⊔_
)
open import Cubical.Foundations.Everything public
using ( _∘_
; Type₀
; Type₁
; Type
; ~_
; _∧_
; PathP
; _≡_
; refl
; _⁻¹
; _∙_
; cong
; cong₂
; transp
; transport
; subst
; J
; lCancel
; isOfHLevel→isOfHLevelDep
; isProp→isSet
; toPathP
; iso
; isoToEquiv
; ua
)
open import Agda.Builtin.Cubical.Glue public
using ( _≃_
)
open import Cubical.Data.Empty public
using ( ⊥
; ⊥-elim
)
open import Cubical.Relation.Nullary public
using ( ¬_
; Dec
; yes
; no
; Discrete
)
open import Cubical.Relation.Nullary.DecidableEq public
using ( Discrete→isSet
)
\end{code}
■ Generalizable variables of universe levels
\begin{code}
variable ℓ ℓ' ℓ'' : Level
\end{code}
■ Propositions and Sets
We redefine isSet to make the point arguments implicit.
\begin{code}
isProp isSet : Type ℓ → Type ℓ
isProp A = (x y : A) → x ≡ y
isSet A = {x y : A} → isProp (x ≡ y)
\end{code}
■ Sums (disjoint unions)
We don't import it from the cubical library, because _⊎_ has the
default precedence which we prefer to make it much lower, and the
names of its constructors differ from those in Agda's standard library.
\begin{code}
infixr 2 _⊎_
data _⊎_ (A : Type ℓ) (B : Type ℓ') : Type (ℓ ⊔ ℓ') where
inj₁ : A → A ⊎ B
inj₂ : B → A ⊎ B
\end{code}
■ Σ-types (dependent pairs)
We find it more convenient to keep the first type argument implicit.
\begin{code}
infixr 1 _,_
record Σ {A : Type ℓ} (B : A → Type ℓ') : Set (ℓ ⊔ ℓ') where
constructor _,_
field
pr₁ : A
pr₂ : B pr₁
open Σ public
\end{code}
■ Cartesian products
\begin{code}
infixr 3 _×_
_×_ : Type ℓ → Type ℓ' → Type (ℓ ⊔ ℓ')
A × B = Σ \(_ : A) → B
\end{code}
■ Tools for equational reasoning
\begin{code}
infix 1 begin_
infixr 2 _≡⟨_⟩_
infix 3 _∎
private
variable
A : Type ℓ
x y z : A
begin_ : x ≡ y → x ≡ y
begin x≡y = x≡y
_≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z
x ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z
_∎ : (x : A) → x ≡ x
_ ∎ = refl
\end{code}
■ Inequality of natural numbers
\begin{code}
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat public
using (zero; suc)
renaming (Nat to ℕ)
infix 10 _≤ᴺ_ _≥ᴺ_
data _≤ᴺ_ : ℕ → ℕ → Type₀ where
z≤n : {n : ℕ} → 0 ≤ᴺ n
s≤s : {n m : ℕ} → n ≤ᴺ m → suc n ≤ᴺ suc m
_≥ᴺ_ : ℕ → ℕ → Type₀
n ≥ᴺ m = m ≤ᴺ n
≤ᴺ-refl : {n : ℕ} → n ≤ᴺ n
≤ᴺ-refl {0} = z≤n
≤ᴺ-refl {suc n} = s≤s ≤ᴺ-refl
n≤1+n : {n : ℕ} → n ≤ᴺ suc n
n≤1+n {0} = z≤n
n≤1+n {suc n} = s≤s n≤1+n
\end{code}
■ Converting paths to Agda's propositional equality
Agda's termination checker sometimes is not happy with the cubical
"subst" function, such as in MutualOrd.lagda and Equivalences.lagda.
We please it by converting paths to Agda's propositional equality
which we can pattern match on directly.
\begin{code}
import Agda.Builtin.Equality as P
PropEqfromPath : {A : Set ℓ} {x y : A} → x ≡ y → x P.≡ y
PropEqfromPath {x = x} p = subst (x P.≡_) p P.refl
\end{code}