{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.PropositionalTruncation.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.PropositionalTruncation.Base
private
variable
ℓ : Level
A B : Type ℓ
recPropTrunc : ∀ {P : Type ℓ} → isProp P → (A → P) → ∥ A ∥ → P
recPropTrunc Pprop f ∣ x ∣ = f x
recPropTrunc Pprop f (squash x y i) =
Pprop (recPropTrunc Pprop f x) (recPropTrunc Pprop f y) i
propTruncIsProp : isProp ∥ A ∥
propTruncIsProp x y = squash x y
elimPropTrunc : ∀ {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) →
((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a
elimPropTrunc Pprop f ∣ x ∣ = f x
elimPropTrunc {A = A} {P = P} Pprop f (squash x y i) =
PpropOver (squash x y) (elimPropTrunc Pprop f x) (elimPropTrunc Pprop f y) i
where
PpropOver : {a b : ∥ A ∥} → (sq : a ≡ b) → ∀ x y → PathP (λ i → P (sq i)) x y
PpropOver {a} = J (λ b (sq : a ≡ b) → ∀ x y → PathP (λ i → P (sq i)) x y) (Pprop a)
elimPropTrunc' : ∀ {P : ∥ A ∥ → Type ℓ} → ((a : ∥ A ∥) → isProp (P a)) →
((x : A) → P ∣ x ∣) → (a : ∥ A ∥) → P a
elimPropTrunc' {P = P} Pprop f a =
recPropTrunc (Pprop a) (λ x → transp (λ i → P (squash ∣ x ∣ a i)) i0 (f x)) a
module SetElim (Bset : isSet B) where
Bset' : isSet' B
Bset' = isSet→isSet' Bset
recPropTrunc→Set : (f : A → B) (kf : 2-Constant f) → ∥ A ∥ → B
helper
: (f : A → B) (kf : 2-Constant f) → (t u : ∥ A ∥)
→ recPropTrunc→Set f kf t ≡ recPropTrunc→Set f kf u
recPropTrunc→Set f kf ∣ x ∣ = f x
recPropTrunc→Set f kf (squash t u i) = helper f kf t u i
helper f kf ∣ x ∣ ∣ y ∣ = kf x y
helper f kf (squash t u i) v
= Bset' (helper f kf t v) (helper f kf u v) (helper f kf t u) refl i
helper f kf t (squash u v i)
= Bset' (helper f kf t u) (helper f kf t v) refl (helper f kf u v) i
kcomp : ∀(f : ∥ A ∥ → B) → 2-Constant (f ∘ ∣_∣)
kcomp f x y = cong f (squash ∣ x ∣ ∣ y ∣)
Fset : isSet (A → B)
Fset = isSetPi (const Bset)
Kset : (f : A → B) → isSet (2-Constant f)
Kset f = isSetPi (λ _ → isSetPi (λ _ → isProp→isSet (Bset _ _)))
setRecLemma
: (f : ∥ A ∥ → B)
→ recPropTrunc→Set (f ∘ ∣_∣) (kcomp f) ≡ f
setRecLemma f i t
= elimPropTrunc {P = λ t → recPropTrunc→Set (f ∘ ∣_∣) (kcomp f) t ≡ f t}
(λ t → Bset _ _) (λ x → refl) t i
mkKmap : (∥ A ∥ → B) → Σ (A → B) 2-Constant
mkKmap f = f ∘ ∣_∣ , kcomp f
fib : (g : Σ (A → B) 2-Constant) → fiber mkKmap g
fib (g , kg) = recPropTrunc→Set g kg , refl
eqv : (g : Σ (A → B) 2-Constant)
→ ∀ fi → fib g ≡ fi
eqv g (f , p) =
ΣProp≡ (λ f → isOfHLevelΣ 2 Fset Kset _ _)
(cong (uncurry recPropTrunc→Set) (sym p) ∙ setRecLemma f)
trunc→Set≃ : (∥ A ∥ → B) ≃ (Σ (A → B) 2-Constant)
trunc→Set≃ .fst = mkKmap
trunc→Set≃ .snd .equiv-proof g = fib g , eqv g
e : B → Σ (A → B) 2-Constant
e b = const b , λ _ _ → refl
eval : A → (γ : Σ (A → B) 2-Constant) → B
eval a₀ (g , _) = g a₀
e-eval : ∀ (a₀ : A) γ → e (eval a₀ γ) ≡ γ
e-eval a₀ (g , kg) i .fst a₁ = kg a₀ a₁ i
e-eval a₀ (g , kg) i .snd a₁ a₂ = Bset' refl (kg a₁ a₂) (kg a₀ a₁) (kg a₀ a₂) i
e-isEquiv : A → isEquiv (e {A = A})
e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl)
preEquiv₁ : ∥ A ∥ → B ≃ Σ (A → B) 2-Constant
preEquiv₁ t = e , recPropTrunc (isPropIsEquiv e) e-isEquiv t
preEquiv₂ : (∥ A ∥ → Σ (A → B) 2-Constant) ≃ Σ (A → B) 2-Constant
preEquiv₂ = isoToEquiv (iso to const (λ _ → refl) retr)
where
to : (∥ A ∥ → Σ (A → B) 2-Constant) → Σ (A → B) 2-Constant
to f .fst x = f ∣ x ∣ .fst x
to f .snd x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd x y i
retr : retract to const
retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x
retr f i t .snd x y
= Bset'
(λ j → f (squash ∣ x ∣ ∣ y ∣ j) .snd x y j)
(f t .snd x y)
(λ j → f (squash ∣ x ∣ t j) .fst x)
(λ j → f (squash ∣ y ∣ t j) .fst y)
i
trunc→Set≃₂ : (∥ A ∥ → B) ≃ Σ (A → B) 2-Constant
trunc→Set≃₂ = compEquiv (equivPi preEquiv₁) preEquiv₂
open SetElim public using (recPropTrunc→Set; trunc→Set≃)
elimPropTrunc→Set
: {P : ∥ A ∥ → Set ℓ}
→ (∀ t → isSet (P t))
→ (f : (x : A) → P ∣ x ∣)
→ (kf : ∀ x y → PathP (λ i → P (squash ∣ x ∣ ∣ y ∣ i)) (f x) (f y))
→ (t : ∥ A ∥) → P t
elimPropTrunc→Set {A = A} {P = P} Pset f kf t
= recPropTrunc→Set (Pset t) g gk t
where
g : A → P t
g x = transp (λ i → P (squash ∣ x ∣ t i)) i0 (f x)
gk : 2-Constant g
gk x y i = transp (λ j → P (squash (squash ∣ x ∣ ∣ y ∣ i) t j)) i0 (kf x y i)
RecHProp : (P : A → hProp ℓ) (kP : ∀ x y → P x ≡ P y) → ∥ A ∥ → hProp ℓ
RecHProp P kP = recPropTrunc→Set isSetHProp P kP
module GpdElim (Bgpd : isGroupoid B) where
Bgpd' : isGroupoid' B
Bgpd' = isGroupoid→isGroupoid' Bgpd
module _ (f : A → B) (3kf : 3-Constant f) where
open 3-Constant 3kf
recPropTrunc→Gpd : ∥ A ∥ → B
pathHelper : (t u : ∥ A ∥) → recPropTrunc→Gpd t ≡ recPropTrunc→Gpd u
triHelper₁
: (t u v : ∥ A ∥)
→ Square refl (pathHelper t u) (pathHelper t v) (pathHelper u v)
triHelper₂
: (t u v : ∥ A ∥)
→ Square (pathHelper t u) (pathHelper t v) (pathHelper u v) refl
recPropTrunc→Gpd ∣ x ∣ = f x
recPropTrunc→Gpd (squash t u i) = pathHelper t u i
pathHelper ∣ x ∣ ∣ y ∣ = link x y
pathHelper (squash t u j) v = triHelper₂ t u v j
pathHelper ∣ x ∣ (squash u v j) = triHelper₁ ∣ x ∣ u v j
triHelper₁ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₁ x y z
triHelper₁ (squash s t i) u v
= Bgpd'
(λ i → refl)
(triHelper₂ s t u)
(triHelper₂ s t v)
(λ i → pathHelper u v)
(triHelper₁ s u v)
(triHelper₁ t u v) i
triHelper₁ ∣ x ∣ (squash t u i) v
= Bgpd'
(λ i → refl)
(triHelper₁ ∣ x ∣ t u)
(λ i → pathHelper ∣ x ∣ v)
(triHelper₂ t u v)
(triHelper₁ ∣ x ∣ t v)
(triHelper₁ ∣ x ∣ u v)
i
triHelper₁ ∣ x ∣ ∣ y ∣ (squash u v i)
= Bgpd'
(λ i → refl)
(λ i → link x y)
(triHelper₁ ∣ x ∣ u v)
(triHelper₁ ∣ y ∣ u v)
(triHelper₁ ∣ x ∣ ∣ y ∣ u)
(triHelper₁ ∣ x ∣ ∣ y ∣ v)
i
triHelper₂ ∣ x ∣ ∣ y ∣ ∣ z ∣ = coh₂ x y z
triHelper₂ (squash s t i) u v
= Bgpd'
(triHelper₂ s t u)
(triHelper₂ s t v)
(λ i → pathHelper u v)
(λ i → refl)
(triHelper₂ s u v)
(triHelper₂ t u v)
i
triHelper₂ ∣ x ∣ (squash t u i) v
= Bgpd'
(triHelper₁ ∣ x ∣ t u)
(λ i → pathHelper ∣ x ∣ v)
(triHelper₂ t u v)
(λ i → refl)
(triHelper₂ ∣ x ∣ t v)
(triHelper₂ ∣ x ∣ u v)
i
triHelper₂ ∣ x ∣ ∣ y ∣ (squash u v i)
= Bgpd'
(λ i → link x y)
(triHelper₁ ∣ x ∣ u v)
(triHelper₁ ∣ y ∣ u v)
(λ i → refl)
(triHelper₂ ∣ x ∣ ∣ y ∣ u)
(triHelper₂ ∣ x ∣ ∣ y ∣ v)
i
preEquiv₁ : (∥ A ∥ → Σ (A → B) 3-Constant) ≃ Σ (A → B) 3-Constant
preEquiv₁ = isoToEquiv (iso fn const (λ _ → refl) retr)
where
open 3-Constant
fn : (∥ A ∥ → Σ (A → B) 3-Constant) → Σ (A → B) 3-Constant
fn f .fst x = f ∣ x ∣ .fst x
fn f .snd .link x y i = f (squash ∣ x ∣ ∣ y ∣ i) .snd .link x y i
fn f .snd .coh₁ x y z i j
= f (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) .snd .coh₁ x y z i j
retr : retract fn const
retr f i t .fst x = f (squash ∣ x ∣ t i) .fst x
retr f i t .snd .link x y j
= f (squash (squash ∣ x ∣ ∣ y ∣ j) t i) .snd .link x y j
retr f i t .snd .coh₁ x y z
= Bgpd'
(λ _ → refl)
(λ k j → f (cb i0 j k) .snd .link x y j)
(λ k j → f (cb i1 j k) .snd .link x z j)
(λ k j → f (cb j i1 k) .snd .link y z j)
(λ k j → f (cb k j i0) .snd .coh₁ x y z k j )
(λ k j → f (cb k j i1) .snd .coh₁ x y z k j)
i
where
cb : I → I → I → ∥ _ ∥
cb i j k = squash (squash ∣ x ∣ (squash ∣ y ∣ ∣ z ∣ i) j) t k
e : B → Σ (A → B) 3-Constant
e b .fst _ = b
e b .snd = record
{ link = λ _ _ _ → b
; coh₁ = λ _ _ _ _ _ → b
}
eval : A → Σ (A → B) 3-Constant → B
eval a₀ (g , _) = g a₀
module _ where
open 3-Constant
e-eval : ∀(a₀ : A) γ → e (eval a₀ γ) ≡ γ
e-eval a₀ (g , 3kg) i .fst x = 3kg .link a₀ x i
e-eval a₀ (g , 3kg) i .snd .link x y = λ j → 3kg .coh₁ a₀ x y j i
e-eval a₀ (g , 3kg) i .snd .coh₁ x y z
= Bgpd'
(λ _ → refl)
(λ k j → 3kg .coh₁ a₀ x y j k)
(λ k j → 3kg .coh₁ a₀ x z j k)
(λ k j → 3kg .coh₁ a₀ y z j k)
(λ _ _ → g a₀)
(3kg .coh₁ x y z)
i
e-isEquiv : A → isEquiv (e {A = A})
e-isEquiv a₀ = isoToIsEquiv (iso e (eval a₀) (e-eval a₀) λ _ → refl)
preEquiv₂ : ∥ A ∥ → B ≃ Σ (A → B) 3-Constant
preEquiv₂ t = e , recPropTrunc (isPropIsEquiv e) e-isEquiv t
trunc→Gpd≃ : (∥ A ∥ → B) ≃ Σ (A → B) 3-Constant
trunc→Gpd≃ = compEquiv (equivPi preEquiv₂) preEquiv₁
open GpdElim using (recPropTrunc→Gpd; trunc→Gpd≃) public
RecHSet : (P : A → HLevel ℓ 2) → 3-Constant P → ∥ A ∥ → HLevel ℓ 2
RecHSet P 3kP = recPropTrunc→Gpd (hLevelHLevelSuc 1) P 3kP