{-
This file contains:
- Definitions equivalences
- Glue types
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Core.Glue where
open import Cubical.Core.Primitives
open import Agda.Builtin.Cubical.Glue public
using ( isEquiv -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ ⊔ ℓ')
; equiv-proof -- ∀ (y : B) → isContr (fiber f y)
; _≃_ -- ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ ⊔ ℓ')
; equivFun -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → A → B
; equivProof -- ∀ {ℓ ℓ'} (T : Type ℓ) (A : Type ℓ') (w : T ≃ A) (a : A) φ →
-- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a
; primGlue -- ∀ {ℓ ℓ'} (A : Type ℓ) {φ : I} (T : Partial φ (Type ℓ'))
-- → (e : PartialP φ (λ o → T o ≃ A)) → Type ℓ'
; prim^unglue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')}
-- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A
-- The ∀ operation on I. This is commented out as it is not currently used for anything
-- ; primFaceForall -- (I → I) → I
)
renaming ( prim^glue to glue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')}
-- → {e : PartialP φ (λ o → T o ≃ A)}
-- → PartialP φ T → A → primGlue A T e
; pathToEquiv to lineToEquiv -- ∀ {ℓ : I → Level} (P : (i : I) → Type (ℓ i)) → P i0 ≃ P i1
)
private
variable
ℓ ℓ' : Level
-- Uncurry Glue to make it more pleasant to use
Glue : (A : Type ℓ) {φ : I}
→ (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A))
→ Type ℓ'
Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd)
-- Make the φ argument of prim^unglue explicit
unglue : {A : Type ℓ} (φ : I) {T : Partial φ (Type ℓ')}
{e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A
unglue φ = prim^unglue {φ = φ}
-- People unfamiliar with [Glue], [glue] and [uglue] can find the types below more
-- informative as they demonstrate the computational behavior.
--
-- Full inference rules can be found in Section 6 of CCHM:
-- https://arxiv.org/pdf/1611.02108.pdf
-- Cubical Type Theory: a constructive interpretation of the univalence axiom
-- Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg
private
Glue-S : (A : Type ℓ) {φ : I}
→ (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A))
→ Sub (Type ℓ') φ (λ { (φ = i1) → Te 1=1 .fst })
Glue-S A Te = inS (Glue A Te)
glue-S :
∀ {A : Type ℓ} {φ : I}
→ {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)}
→ (t : PartialP φ T)
→ Sub A φ (λ { (φ = i1) → e 1=1 .fst (t 1=1) })
→ Sub (primGlue A T e) φ (λ { (φ = i1) → t 1=1 })
glue-S t s = inS (glue t (outS s))
unglue-S :
∀ {A : Type ℓ} (φ : I)
{T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)}
→ (x : primGlue A T e)
→ Sub A φ (λ { (φ = i1) → e 1=1 .fst x })
unglue-S φ x = inS (prim^unglue {φ = φ} x)