{- This file contains: - Definitions equivalences - Glue types -} {-# OPTIONS --cubical --safe #-} module Cubical.Core.Glue where open import Cubical.Core.Primitives open import Agda.Builtin.Cubical.Glue public using ( isEquiv -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ ⊔ ℓ') ; equiv-proof -- ∀ (y : B) → isContr (fiber f y) ; _≃_ -- ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ ⊔ ℓ') ; equivFun -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → A → B ; equivProof -- ∀ {ℓ ℓ'} (T : Type ℓ) (A : Type ℓ') (w : T ≃ A) (a : A) φ → -- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a ; primGlue -- ∀ {ℓ ℓ'} (A : Type ℓ) {φ : I} (T : Partial φ (Type ℓ')) -- → (e : PartialP φ (λ o → T o ≃ A)) → Type ℓ' ; prim^unglue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A -- The ∀ operation on I. This is commented out as it is not currently used for anything -- ; primFaceForall -- (I → I) → I ) renaming ( prim^glue to glue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')} -- → {e : PartialP φ (λ o → T o ≃ A)} -- → PartialP φ T → A → primGlue A T e ; pathToEquiv to lineToEquiv -- ∀ {ℓ : I → Level} (P : (i : I) → Type (ℓ i)) → P i0 ≃ P i1 ) private variable ℓ ℓ' : Level -- Uncurry Glue to make it more pleasant to use Glue : (A : Type ℓ) {φ : I} → (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) → Type ℓ' Glue A Te = primGlue A (λ x → Te x .fst) (λ x → Te x .snd) -- Make the φ argument of prim^unglue explicit unglue : {A : Type ℓ} (φ : I) {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A unglue φ = prim^unglue {φ = φ} -- People unfamiliar with [Glue], [glue] and [uglue] can find the types below more -- informative as they demonstrate the computational behavior. -- -- Full inference rules can be found in Section 6 of CCHM: -- https://arxiv.org/pdf/1611.02108.pdf -- Cubical Type Theory: a constructive interpretation of the univalence axiom -- Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg private Glue-S : (A : Type ℓ) {φ : I} → (Te : Partial φ (Σ[ T ∈ Type ℓ' ] T ≃ A)) → Sub (Type ℓ') φ (λ { (φ = i1) → Te 1=1 .fst }) Glue-S A Te = inS (Glue A Te) glue-S : ∀ {A : Type ℓ} {φ : I} → {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → (t : PartialP φ T) → Sub A φ (λ { (φ = i1) → e 1=1 .fst (t 1=1) }) → Sub (primGlue A T e) φ (λ { (φ = i1) → t 1=1 }) glue-S t s = inS (glue t (outS s)) unglue-S : ∀ {A : Type ℓ} (φ : I) {T : Partial φ (Type ℓ')} {e : PartialP φ (λ o → T o ≃ A)} → (x : primGlue A T e) → Sub A φ (λ { (φ = i1) → e 1=1 .fst x }) unglue-S φ x = inS (prim^unglue {φ = φ} x)