{-# OPTIONS --cubical --no-exact-split --safe #-}
module Cubical.Reflection.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Data.List.Base
open import Cubical.Data.Nat.Base
import Agda.Builtin.Reflection as R
open import Agda.Builtin.String
_>>=_ = R.bindTC
_<|>_ = R.catchTC
_$_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (A → B) → A → B
f $ a = f a
_>>_ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → R.TC A → R.TC B → R.TC B
f >> g = f >>= λ _ → g
infixl 4 _>>=_ _>>_ _<|>_
infixr 3 _$_
liftTC : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → (A → B) → R.TC A → R.TC B
liftTC f ta = ta >>= λ a → R.returnTC (f a)
v : ℕ → R.Term
v n = R.var n []
pattern varg t = R.arg (R.arg-info R.visible (R.modality R.relevant R.quantity-ω)) t
pattern harg t = R.arg (R.arg-info R.hidden (R.modality R.relevant R.quantity-ω)) t
pattern _v∷_ a l = varg a ∷ l
pattern _h∷_ a l = harg a ∷ l
infixr 5 _v∷_ _h∷_
vlam : String → R.Term → R.Term
vlam str t = R.lam R.visible (R.abs str t)
hlam : String → R.Term → R.Term
hlam str t = R.lam R.hidden (R.abs str t)
newMeta = R.checkType R.unknown
extend*Context : ∀ {ℓ} {A : Type ℓ} → List (R.Arg R.Type) → R.TC A → R.TC A
extend*Context [] tac = tac
extend*Context (a ∷ as) tac = R.extendContext a (extend*Context as tac)