{-# OPTIONS --cubical --no-import-sorts --safe --postfix-projections #-}

open import Cubical.Core.Everything

open import Cubical.Functions.Embedding
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport

-- A helper module for deriving univalence for a higher inductive-recursive
-- universe.
--
--  U is the type of codes
--  El is the decoding
--  un is a higher constructor that requires paths between codes to exist
--    for equivalences of decodings
--  comp is intended to be the computational behavior of El on un, although
--    it seems that being a path is sufficient.
--
-- Given a universe defined as above, it's possible to show that the path
-- space of the code type is equivalent to the path space of the actual
-- decodings, which are themselves determined by equivalences.
--
-- The levels are left independent, but of course it will generally be
-- impossible to define this sort of universe unless ℓ' < ℓ, because El will
-- be too big to go in a constructor of U. The exception would be if U could
-- be defined independently of El, though it might be tricky to get the right
-- higher structure in such a case.
module Cubical.Foundations.Univalence.Universe { ℓ'}
    (U : Type )
    (El : U  Type ℓ')
    (un :  s t  El s  El t  s  t)
    (comp : ∀{s t} (e : El s  El t)  cong El (un s t e)  ua e)
  where
private
  variable
    A : Type ℓ'

module UU-Lemmas where
  reg : transport  _  A)  idfun A
  reg {A} i z = transp  _  A) i z

  nu :  x y  x  y  El x  El y
  nu x y p = transportEquiv (cong El p)

  cong-un-te
    :  x y (p : El x  El y)
     cong El (un x y (transportEquiv p))  p
  cong-un-te x y p
    = comp (transportEquiv p)  uaTransportη p

  nu-un :  x y (e : El x  El y)  nu x y (un x y e)  e
  nu-un x y e
    = equivEq {e = nu x y (un x y e)} {f = e} λ i z
         (cong  p  transport p z) (comp e)  uaβ e z) i

  El-un-equiv :  x i  El (un x x (idEquiv _) i)  El x
  El-un-equiv x i = λ where
      .fst  transp  j  p j) (i  ~ i)
      .snd  transp  j  isEquiv (transp  k  p (j  k)) (~ j  i  ~ i)))
                (i  ~ i) (idIsEquiv T)
    where
    T = El (un x x (idEquiv _) i)
    p : T  El x
    p j = (comp (idEquiv _)  uaIdEquiv {A = El x}) j i

  un-refl :  x  un x x (idEquiv (El x))  refl
  un-refl x i j
    = hcomp  k  λ where
          (i = i0)  un x x (idEquiv (El x)) j
          (i = i1)  un x x (idEquiv (El x)) (j  k)
          (j = i0)  un x x (idEquiv (El x)) (~ i  k)
          (j = i1)  x)
        (un (un x x (idEquiv (El x)) (~ i)) x (El-un-equiv x (~ i)) j)

  nu-refl :  x  nu x x refl  idEquiv (El x)
  nu-refl x = equivEq {e = nu x x refl} {f = idEquiv (El x)} reg

  un-nu :  x y (p : x  y)  un x y (nu x y p)  p
  un-nu x y p
    = J  z q  un x z (nu x z q)  q) (cong (un x x) (nu-refl x)  un-refl x) p

open UU-Lemmas
open Iso

equivIso :  s t  Iso (s  t) (El s  El t)
equivIso s t .fun = nu s t
equivIso s t .inv = un s t
equivIso s t .rightInv = nu-un s t
equivIso s t .leftInv = un-nu s t

pathIso :  s t  Iso (s  t) (El s  El t)
pathIso s t .fun = cong El
pathIso s t .inv = un s t  transportEquiv
pathIso s t .rightInv = cong-un-te s t
pathIso s t .leftInv = un-nu s t

minivalence : ∀{s t}  (s  t)  (El s  El t)
minivalence {s} {t} = isoToEquiv (equivIso s t)

path-reflection : ∀{s t}  (s  t)  (El s  El t)
path-reflection {s} {t} = isoToEquiv (pathIso s t)

isEmbeddingEl : isEmbedding El
isEmbeddingEl s t = snd path-reflection