{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Equiv.BiInvertible where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
record BiInvEquiv {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where
constructor biInvEquiv
field
fun : A → B
invr : B → A
invr-rightInv : section fun invr
invl : B → A
invl-leftInv : retract fun invl
invr≡invl : ∀ b → invr b ≡ invl b
invr≡invl b = invr b ≡⟨ sym (invl-leftInv (invr b)) ⟩
invl (fun (invr b)) ≡⟨ cong invl (invr-rightInv b) ⟩
invl b ∎
invr-leftInv : retract fun invr
invr-leftInv a = invr≡invl (fun a) ∙ (invl-leftInv a)
invr≡invl-leftInv : ∀ a → PathP (λ j → invr≡invl (fun a) j ≡ a) (invr-leftInv a) (invl-leftInv a)
invr≡invl-leftInv a j i = compPath-filler' (invr≡invl (fun a)) (invl-leftInv a) (~ j) i
invl-rightInv : section fun invl
invl-rightInv a = sym (cong fun (invr≡invl a)) ∙ (invr-rightInv a)
invr≡invl-rightInv : ∀ a → PathP (λ j → fun (invr≡invl a j) ≡ a) (invr-rightInv a) (invl-rightInv a)
invr≡invl-rightInv a j i = compPath-filler' (sym (cong fun (invr≡invl a))) (invr-rightInv a) j i
module _ {ℓ} {A B : Type ℓ} (e : BiInvEquiv A B) where
open BiInvEquiv e
biInvEquiv→Iso-right : Iso A B
Iso.fun biInvEquiv→Iso-right = fun
Iso.inv biInvEquiv→Iso-right = invr
Iso.rightInv biInvEquiv→Iso-right = invr-rightInv
Iso.leftInv biInvEquiv→Iso-right = invr-leftInv
biInvEquiv→Iso-left : Iso A B
Iso.fun biInvEquiv→Iso-left = fun
Iso.inv biInvEquiv→Iso-left = invl
Iso.rightInv biInvEquiv→Iso-left = invl-rightInv
Iso.leftInv biInvEquiv→Iso-left = invl-leftInv
biInvEquiv→Equiv-right biInvEquiv→Equiv-left : A ≃ B
biInvEquiv→Equiv-right = fun , isoToIsEquiv biInvEquiv→Iso-right
biInvEquiv→Equiv-left = fun , isoToIsEquiv biInvEquiv→Iso-left
biInvEquiv→HAEquiv : HAEquiv A B
biInvEquiv→HAEquiv = iso→HAEquiv biInvEquiv→Iso-left
module _ {ℓ} {A B : Type ℓ} (i : Iso A B) where
open Iso i
iso→BiInvEquiv : BiInvEquiv A B
BiInvEquiv.fun iso→BiInvEquiv = fun
BiInvEquiv.invr iso→BiInvEquiv = inv
BiInvEquiv.invr-rightInv iso→BiInvEquiv = rightInv
BiInvEquiv.invl iso→BiInvEquiv = inv
BiInvEquiv.invl-leftInv iso→BiInvEquiv = leftInv