{-# OPTIONS --cubical #-}
module BrouwerTree.Classifiability where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat
using (ℕ ; zero ; suc)
open import Cubical.Relation.Nullary
open import BrouwerTree.Base
open import BrouwerTree.Properties
open import BrouwerTree.Code.Results
open import Abstract.ZerSucLim _<_ _≤_ public
open Properties
Brw-is-set
(λ _ _ → <-trunc)
(λ _ _ → ≤-trunc)
<-irreflexive
(λ _ → ≤-refl)
(λ _ _ _ → ≤-trans)
≤-antisym
<∘≤-in-<
public
zero-is-zero : is-zero zero
zero-is-zero = λ b → ≤-zero
Brw-has-zero : has-zero
Brw-has-zero = zero , zero-is-zero
is-zero→≡zero : {a : Brw} → is-zero a → a ≡ zero
is-zero→≡zero {a} za = x≤zero→x≡zero (za zero)
succ-calc-strong-suc : (a : Brw) → (succ a) is-strong-suc-of a
succ-calc-strong-suc a = (≤-refl , (λ x a<x → a<x )) , λ x x<sa → ≤-succ-mono⁻¹ x<sa
succ-is-suc : (a : Brw) → (succ a) is-suc-of a
succ-is-suc a = fst (succ-calc-strong-suc a)
is-suc→≡succ : ∀ {a b} → a is-suc-of b → a ≡ succ b
is-suc→≡succ {a} {b} sa = cong fst (suc-unique b (a , sa) (succ b , fst (succ-calc-strong-suc b)))
limit-is-sup : ∀ f (f↑ : increasing f) → limit f {f↑} is-sup-of f
limit-is-sup f f↑ = (λ i → ≤-cocone-simple f) , λ x → ≤-limiting f {x = x}
is-lim→≡limit : ∀ {a f f↑} → a is-lim-of (f , f↑) → a ≡ limit f {f↑}
is-lim→≡limit {a} {f} {f↑} a-is-lim = ≤-antisym (snd a-is-lim (limit f {f↑}) (λ n → ≤-cocone-simple f))
(≤-limiting f {f↑} (λ k → fst a-is-lim k))
is-sup-increasing→≡limit : ∀ {a f} → (f↑ : increasing f) → a is-sup-of f → a ≡ limit f {f↑}
is-sup-increasing→≡limit {a} {f} f↑ a-is-sup = is-lim→≡limit a-is-sup
Brw-has-limits : has-limits
Brw-has-limits = (λ (f , f↑) → limit f {f↑}) , (λ (f , f↑) → limit-is-sup f f↑)
Brw-has-classification : (a : Brw) → is-classifiable a
Brw-has-classification = Brw-ind (λ a → is-classifiable a) isProp⟨is-classifiable⟩
(inl zero-is-zero)
(λ {a} _ → inr (inl (a , succ-calc-strong-suc a)))
λ {f} {f↑} _ → inr (inr ∣ (f , f↑) , limit-is-sup f f↑ ∣)
open ClassifiabilityInduction Brw-has-classification <-is-wellfounded public
Brw-satisfies-classifiability-induction : ∀ ℓ → satisfies-classifiability-induction ℓ
Brw-satisfies-classifiability-induction ℓ = ind {ℓ}