======================
= =
= Gödel's System T =
= =
======================
Chuangjie Xu, July 2019
\begin{code}
{-# OPTIONS --without-K --safe #-}
module T where
open import Preliminaries
\end{code}
■ Types, contexts and terms of T
Here we work with the lambda-calculus version of system T, and with de
Bruijn indices instead of variables.
\begin{code}
infixr 30 _⇾_
infixl 20 _₊_
infixl 20 _·_
data Ty : Set where
ι : Ty
_⇾_ : Ty → Ty → Ty
data Cxt : Set where
ε : Cxt
_₊_ : Cxt → Ty → Cxt
data ∥_∈_∥ (σ : Ty) : Cxt → Set where
zero : {Γ : Cxt} → ∥ σ ∈ (Γ ₊ σ) ∥
succ : {τ : Ty} {Γ : Cxt} → ∥ σ ∈ Γ ∥ → ∥ σ ∈ Γ ₊ τ ∥
data T (Γ : Cxt) : Ty → Set where
Var : {σ : Ty} → ∥ σ ∈ Γ ∥ → T Γ σ
Lam : {σ τ : Ty} → T (Γ ₊ σ) τ → T Γ (σ ⇾ τ)
_·_ : {σ τ : Ty} → T Γ (σ ⇾ τ) → T Γ σ → T Γ τ
Zero : T Γ ι
Succ : T Γ (ι ⇾ ι)
Rec : {σ : Ty} → T Γ (σ ⇾ (ι ⇾ σ ⇾ σ) ⇾ ι ⇾ σ)
\end{code}
■ The standard interpretation of T into Agda
\begin{code}
⟦_⟧ʸ : Ty → Set
⟦ ι ⟧ʸ = ℕ
⟦ σ ⇾ τ ⟧ʸ = ⟦ σ ⟧ʸ → ⟦ τ ⟧ʸ
⟦_⟧ˣ : Cxt → Set
⟦ ε ⟧ˣ = 𝟙
⟦ Γ ₊ ρ ⟧ˣ = ⟦ Γ ⟧ˣ × ⟦ ρ ⟧ʸ
_₍_₎ : {Γ : Cxt} {ρ : Ty} → ⟦ Γ ⟧ˣ → ∥ ρ ∈ Γ ∥ → ⟦ ρ ⟧ʸ
(_ , a) ₍ zero ₎ = a
(γ , _) ₍ succ i ₎ = γ ₍ i ₎
⟦_⟧ᵐ : {Γ : Cxt} {σ : Ty} → T Γ σ → ⟦ Γ ⟧ˣ → ⟦ σ ⟧ʸ
⟦ Var i ⟧ᵐ γ = γ ₍ i ₎
⟦ Lam t ⟧ᵐ γ = λ a → ⟦ t ⟧ᵐ (γ , a)
⟦ f · a ⟧ᵐ γ = ⟦ f ⟧ᵐ γ (⟦ a ⟧ᵐ γ)
⟦ Zero ⟧ᵐ _ = 0
⟦ Succ ⟧ᵐ _ = succ
⟦ Rec ⟧ᵐ _ = rec
⟦_⟧ : {ρ : Ty} → T ε ρ → ⟦ ρ ⟧ʸ
⟦ t ⟧ = ⟦ t ⟧ᵐ ⋆
T-definable : {ρ : Ty} → ⟦ ρ ⟧ʸ → Set
T-definable {ρ} a = Σ \(t : T ε ρ) → ⟦ t ⟧ ≡ a
\end{code}
■ Some auxiliaries
\begin{code}
ν₀ : {Γ : Cxt} {ρ : Ty} → T (Γ ₊ ρ) ρ
ν₀ = Var zero
ν₁ : {Γ : Cxt} {ρ σ : Ty} → T (Γ ₊ ρ ₊ σ) ρ
ν₁ = Var (succ zero)
ν₂ : {Γ : Cxt} {ρ σ₀ σ₁ : Ty} → T (Γ ₊ ρ ₊ σ₀ ₊ σ₁) ρ
ν₂ = Var (succ (succ zero))
ν₃ : {Γ : Cxt} {ρ σ₀ σ₁ σ₂ : Ty} → T (Γ ₊ ρ ₊ σ₀ ₊ σ₁ ₊ σ₂) ρ
ν₃ = Var (succ (succ (succ zero)))
Max : {Γ : Cxt} → T Γ (ι ⇾ ι ⇾ ι)
Max = Rec · Lam ν₀ · Lam (Lam (Rec · (Succ · ν₁) · Lam (Lam (Succ · (ν₂ · ν₁)))))
max : ℕ → ℕ → ℕ
max = ⟦ Max ⟧
Max-spec₀ : (n m : ℕ) → n ≤ max n m
Max-spec₀ 0 m = ≤zero
Max-spec₀ (succ n) 0 = ≤refl
Max-spec₀ (succ n) (succ m) = ≤succ (Max-spec₀ n m)
Max-spec₁ : (n m : ℕ) → m ≤ max n m
Max-spec₁ 0 m = ≤refl
Max-spec₁ (succ n) 0 = ≤zero
Max-spec₁ (succ n) (succ m) = ≤succ (Max-spec₁ n m)
φ : ℕᴺ → ℕ → ℕ
φ α 0 = α 0
φ α (succ n) = max (φ α n) (α (succ n))
φ-spec : {i j : ℕ} → i ≤ j → {α : ℕᴺ} → α i ≤ φ α j
φ-spec {i} {0} ≤zero = ≤refl
φ-spec {i} {succ j} r with ≤-cases r
φ-spec {i} {succ j} r | inl refl = Max-spec₁ (φ _ j) _
φ-spec {i} {succ j} r | inr i≤j = ≤trans (φ-spec i≤j) (Max-spec₀ _ _)
\end{code}