============================
 =                          =
 =  §1.2  Gödel's System T  =
 =                          =
 ============================

    Chuangjie Xu, July 2019

\begin{code}

{-# OPTIONS --without-K --safe #-}

module T where

open import Preliminaries

\end{code}

■ Types, contexts and terms of T

Here we work with the lambda-calculus version of System T, and with de
Bruijn indices instead of variables.

\begin{code}

infixr 30 _⇾_
infixr 31 _⊠_
infixl 20 _₊_
infixl 20 _·_

--
-- finite types
--
data Ty : Set where
 ι   : Ty
 _⇾_ _⊠_ : Ty  Ty  Ty

--
-- contexts as finite lists of types
--
data Cxt : Set where
 ε   : Cxt
 _₊_ : Cxt  Ty  Cxt

--
-- indices of types/variables in context
--
data ∥_∈_∥ (σ : Ty) : Cxt  Set where
 zero : {Γ : Cxt}   σ  (Γ  σ) 
 suc  : {τ : Ty} {Γ : Cxt}   σ  Γ    σ  Γ  τ 

--
-- terms
--
data T (Γ : Cxt) : Ty  Set where
 Var  : {σ : Ty}   σ  Γ   T Γ σ
 Lam  : {σ τ : Ty}  T (Γ  σ) τ  T Γ (σ  τ)
 _·_  : {σ τ : Ty}  T Γ (σ  τ)  T Γ σ  T Γ τ
 Zero : T Γ ι
 Suc  : T Γ (ι  ι)
 Rec  : {σ : Ty}  T Γ (σ  (ι  σ  σ)  ι  σ)
 Pair : {σ τ : Ty}  T Γ (σ  τ  σ  τ)
 Pr1  : {σ τ : Ty}  T Γ (σ  τ  σ)
 Pr2  : {σ τ : Ty}  T Γ (σ  τ  τ)

\end{code}

■ The standard interpretation of T into Agda

\begin{code}

⟦_⟧ʸ : Ty  Set
 ι ⟧ʸ     = 
 σ  τ ⟧ʸ =  σ ⟧ʸ   τ ⟧ʸ
 σ  τ ⟧ʸ =  σ ⟧ʸ ×  τ ⟧ʸ

⟦_⟧ˣ : Cxt  Set
 ε ⟧ˣ     = 𝟙
 Γ  ρ ⟧ˣ =  Γ ⟧ˣ ×  ρ ⟧ʸ

infix 25 _₍_₎

_₍_₎ : {Γ : Cxt} {ρ : Ty}   Γ ⟧ˣ   ρ  Γ    ρ ⟧ʸ
(_ , a)  zero   = a
(γ , _)  suc i  = γ  i 

⟦_⟧ᵐ : {Γ : Cxt} {σ : Ty}  T Γ σ   Γ ⟧ˣ   σ ⟧ʸ
 Var i ⟧ᵐ γ = γ  i 
 Lam t ⟧ᵐ γ = λ a   t ⟧ᵐ (γ , a)
 f · a ⟧ᵐ γ =  f ⟧ᵐ γ ( a ⟧ᵐ γ)
 Zero ⟧ᵐ  _ = 0
 Suc ⟧ᵐ   _ = suc
 Rec ⟧ᵐ   _ = rec
 Pair ⟧ᵐ  _ = _,_
 Pr1 ⟧ᵐ   _ = pr₁
 Pr2 ⟧ᵐ   _ = pr₂

⟦_⟧ : {ρ : Ty}  T ε ρ   ρ ⟧ʸ
 t  =  t ⟧ᵐ 

--
-- An (Agda) element a is "T-definable" if one can find a closed T
-- term whose standard interpretation is a.
--
T-definable : {ρ : Ty}   ρ ⟧ʸ  Set
T-definable {ρ} a = Σ \(t : T ε ρ)   t   a

\end{code}

■ Variables

\begin{code}

ν₀ : {Γ : Cxt} {ρ : Ty}  T (Γ  ρ) ρ
ν₀ = Var zero

ν₁ : {Γ : Cxt} {ρ σ : Ty}  T (Γ  ρ  σ) ρ
ν₁ = Var (suc zero)

ν₂ : {Γ : Cxt} {ρ σ₀ σ₁ : Ty}  T (Γ  ρ  σ₀  σ₁) ρ
ν₂ = Var (suc (suc zero))

ν₃ : {Γ : Cxt} {ρ σ₀ σ₁ σ₂ : Ty}  T (Γ  ρ  σ₀  σ₁  σ₂) ρ
ν₃ = Var (suc (suc (suc zero)))

ν₄ : {Γ : Cxt} {ρ σ₀ σ₁ σ₂ σ₃ : Ty}  T (Γ  ρ  σ₀  σ₁  σ₂  σ₃) ρ
ν₄ = Var (suc (suc (suc (suc zero))))

\end{code}