============================
= =
= §1.2 Gödel's System T =
= =
============================
Chuangjie Xu, July 2019
\begin{code}
{-# OPTIONS --without-K --safe #-}
module T where
open import Preliminaries
\end{code}
■ Types, contexts and terms of T
Here we work with the lambda-calculus version of System T, and with de
Bruijn indices instead of variables.
\begin{code}
infixr 30 _⇾_
infixr 31 _⊠_
infixl 20 _₊_
infixl 20 _·_
data Ty : Set where
ι : Ty
_⇾_ _⊠_ : Ty → Ty → Ty
data Cxt : Set where
ε : Cxt
_₊_ : Cxt → Ty → Cxt
data ∥_∈_∥ (σ : Ty) : Cxt → Set where
zero : {Γ : Cxt} → ∥ σ ∈ (Γ ₊ σ) ∥
suc : {τ : Ty} {Γ : Cxt} → ∥ σ ∈ Γ ∥ → ∥ σ ∈ Γ ₊ τ ∥
data T (Γ : Cxt) : Ty → Set where
Var : {σ : Ty} → ∥ σ ∈ Γ ∥ → T Γ σ
Lam : {σ τ : Ty} → T (Γ ₊ σ) τ → T Γ (σ ⇾ τ)
_·_ : {σ τ : Ty} → T Γ (σ ⇾ τ) → T Γ σ → T Γ τ
Zero : T Γ ι
Suc : T Γ (ι ⇾ ι)
Rec : {σ : Ty} → T Γ (σ ⇾ (ι ⇾ σ ⇾ σ) ⇾ ι ⇾ σ)
Pair : {σ τ : Ty} → T Γ (σ ⇾ τ ⇾ σ ⊠ τ)
Pr1 : {σ τ : Ty} → T Γ (σ ⊠ τ ⇾ σ)
Pr2 : {σ τ : Ty} → T Γ (σ ⊠ τ ⇾ τ)
\end{code}
■ The standard interpretation of T into Agda
\begin{code}
⟦_⟧ʸ : Ty → Set
⟦ ι ⟧ʸ = ℕ
⟦ σ ⇾ τ ⟧ʸ = ⟦ σ ⟧ʸ → ⟦ τ ⟧ʸ
⟦ σ ⊠ τ ⟧ʸ = ⟦ σ ⟧ʸ × ⟦ τ ⟧ʸ
⟦_⟧ˣ : Cxt → Set
⟦ ε ⟧ˣ = 𝟙
⟦ Γ ₊ ρ ⟧ˣ = ⟦ Γ ⟧ˣ × ⟦ ρ ⟧ʸ
infix 25 _₍_₎
_₍_₎ : {Γ : Cxt} {ρ : Ty} → ⟦ Γ ⟧ˣ → ∥ ρ ∈ Γ ∥ → ⟦ ρ ⟧ʸ
(_ , a) ₍ zero ₎ = a
(γ , _) ₍ suc i ₎ = γ ₍ i ₎
⟦_⟧ᵐ : {Γ : Cxt} {σ : Ty} → T Γ σ → ⟦ Γ ⟧ˣ → ⟦ σ ⟧ʸ
⟦ Var i ⟧ᵐ γ = γ ₍ i ₎
⟦ Lam t ⟧ᵐ γ = λ a → ⟦ t ⟧ᵐ (γ , a)
⟦ f · a ⟧ᵐ γ = ⟦ f ⟧ᵐ γ (⟦ a ⟧ᵐ γ)
⟦ Zero ⟧ᵐ _ = 0
⟦ Suc ⟧ᵐ _ = suc
⟦ Rec ⟧ᵐ _ = rec
⟦ Pair ⟧ᵐ _ = _,_
⟦ Pr1 ⟧ᵐ _ = pr₁
⟦ Pr2 ⟧ᵐ _ = pr₂
⟦_⟧ : {ρ : Ty} → T ε ρ → ⟦ ρ ⟧ʸ
⟦ t ⟧ = ⟦ t ⟧ᵐ ⋆
T-definable : {ρ : Ty} → ⟦ ρ ⟧ʸ → Set
T-definable {ρ} a = Σ \(t : T ε ρ) → ⟦ t ⟧ ≡ a
\end{code}
■ Variables
\begin{code}
ν₀ : {Γ : Cxt} {ρ : Ty} → T (Γ ₊ ρ) ρ
ν₀ = Var zero
ν₁ : {Γ : Cxt} {ρ σ : Ty} → T (Γ ₊ ρ ₊ σ) ρ
ν₁ = Var (suc zero)
ν₂ : {Γ : Cxt} {ρ σ₀ σ₁ : Ty} → T (Γ ₊ ρ ₊ σ₀ ₊ σ₁) ρ
ν₂ = Var (suc (suc zero))
ν₃ : {Γ : Cxt} {ρ σ₀ σ₁ σ₂ : Ty} → T (Γ ₊ ρ ₊ σ₀ ₊ σ₁ ₊ σ₂) ρ
ν₃ = Var (suc (suc (suc zero)))
ν₄ : {Γ : Cxt} {ρ σ₀ σ₁ σ₂ σ₃ : Ty} → T (Γ ₊ ρ ₊ σ₀ ₊ σ₁ ₊ σ₂ ₊ σ₃) ρ
ν₄ = Var (suc (suc (suc (suc zero))))
\end{code}