Chuangjie Xu 2014

\begin{code}

{-# OPTIONS --without-K #-}

module UsingFunext.Space.IndiscreteSpace where

open import Preliminaries.SetsAndFunctions hiding (_+_)
open import Preliminaries.NaturalNumber
open import Preliminaries.Boolean
open import Preliminaries.Sequence
open import Continuity.UniformContinuity
open import UsingFunext.Space.Coverage
open import UsingFunext.Space.Space
open import UsingFunext.Space.CartesianClosedness
open import UsingFunext.Space.Coproduct

\end{code}

Indisrecte C-spaces

\begin{code}

indiscrete : Space  Set
indiscrete X = ∀(p : ₂ℕ  U X)  p  Probe X

\end{code}

The arbitrary product of indiscrete spaces is indiscrete.

\begin{code}

Proposition[∏-indiscrete] :

  ∀{I : Set} (X : I  Space)  (∀ i  indiscrete (X i))  indiscrete ( X)

Proposition[∏-indiscrete] X indX p = goal
 where
  goal : p  Probe ( X)
      -- ∀ i → (λ α → p α i) ∈ Probe (X i)
  goal i = indX i  α  p α i)

\end{code}

The coproduct of countable family of indiscrete spaces is indiscrete, if UC
holds in Set.

\begin{code}

Proposition[UC-∐-indiscrete] : Axiom[UC-ℕ] 

  ∀(X :   Space)  (∀(i : )  indiscrete (X i))  indiscrete ( X)

Proposition[UC-∐-indiscrete] uc X indX p = n , prf
 where
  claim₀ : locally-constant (pr₁  p)
  claim₀ = uc (pr₁  p)
  n : 
  n = pr₁ claim₀
  claim₁ : ∀(α β : ₂ℕ)  α ≡[ n ] β  pr₁(p α)  pr₁(p β)
  claim₁ = pr₁ (pr₂ claim₀)
  prf : ∀(s : ₂Fin n)  Σ \(i : )  Σ \(q : ₂ℕ  U(X i)) 
          (q  Probe (X i)) × (∀(α : ₂ℕ)  p(cons s α)  (i , q α))
  prf s = i , q , sclaim₀ , sclaim₁
   where
    i : 
    i = pr₁(p(cons s ))
    e₀ : ∀(α : ₂ℕ)  pr₁(p(cons s α))  i
    e₀ α = claim₁ (cons s α) (cons s ) (Lemma[cons-≡[]] s α )
    q : ₂ℕ  U(X i)
    q α = transport (U  X) (e₀ α) (pr₂(p(cons s α)))
    sclaim₀ : q  Probe(X i)
    sclaim₀ = indX i q
    sclaim₁ : ∀(α : ₂ℕ)  p(cons s α)  (i , q α)
    sclaim₁ α = pair⁼ (e₀ α) refl

\end{code}