\begin{code}
{-# OPTIONS --without-K #-}
module AddingProbeAxiom.Space.CartesianClosedness where
open import Preliminaries.SetsAndFunctions
open import Preliminaries.NaturalNumber
open import Preliminaries.Sequence
open import Continuity.UniformContinuity
open import AddingProbeAxiom.Space.Coverage
open import AddingProbeAxiom.Space.Space
\end{code}
\begin{code}
⒈Space : Space
⒈Space = ⒈ , P , c₀ , c₁ , c₂ , c₃
where
P : Subset (₂ℕ → ⒈)
P p = ⒈
c₀ : ∀(x : ⒈) → (λ α → x) ∈ P
c₀ _ = ⋆
c₁ : ∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(p : ₂ℕ → ⒈) → p ∈ P → p ∘ t ∈ P
c₁ _ _ _ _ = ⋆
c₂ : ∀(p : ₂ℕ → ⒈) → (Σ \(n : ℕ) → ∀(s : ₂Fin n) → (p ∘ (cons s)) ∈ P) → p ∈ P
c₂ _ _ = ⋆
c₃ : ∀(p q : ₂ℕ → ⒈) → p ∈ P → (∀ α → p α ≡ q α) → q ∈ P
c₃ _ _ _ _ = ⋆
continuous-unit : (A : Space) → Map A ⒈Space
continuous-unit A = unit , (λ p _ → ⋆)
\end{code}
\begin{code}
infixl 3 _⊗_
_⊗_ : Space → Space → Space
(X , P , pc₀ , pc₁ , pc₂ , pc₃) ⊗ (Y , Q , qc₀ , qc₁ , qc₂ , qc₃) =
(X × Y , R , rc₀ , rc₁ , rc₂ , rc₃)
where
R : Subset(₂ℕ → X × Y)
R r = ((pr₁ ∘ r) ∈ P) × ((pr₂ ∘ r) ∈ Q)
rc₀ : ∀(w : X × Y) → (λ α → w) ∈ R
rc₀ (x , y) = c₀ , c₁
where
c₀ : (λ α → x) ∈ P
c₀ = pc₀ x
c₁ : (λ α → y) ∈ Q
c₁ = qc₀ y
rc₁ : ∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(r : ₂ℕ → X × Y) → r ∈ R → r ∘ t ∈ R
rc₁ t uc r rR = c₀ , c₁
where
c₀ : pr₁ ∘ (r ∘ t) ∈ P
c₀ = pc₁ t uc (pr₁ ∘ r) (pr₁ rR)
c₁ : pr₂ ∘ (r ∘ t) ∈ Q
c₁ = qc₁ t uc (pr₂ ∘ r) (pr₂ rR)
rc₂ : ∀(r : ₂ℕ → X × Y) → (Σ \(n : ℕ) → ∀(s : ₂Fin n) → (r ∘ (cons s)) ∈ R) → r ∈ R
rc₂ r (n , prf) = c₀ , c₁
where
c₀ : pr₁ ∘ r ∈ P
c₀ = pc₂ (pr₁ ∘ r) (n , (λ s → pr₁(prf s)))
c₁ : pr₂ ∘ r ∈ Q
c₁ = qc₂ (pr₂ ∘ r) (n , (λ s → pr₂(prf s)))
rc₃ : ∀(r r' : ₂ℕ → X × Y) → r ∈ R → (∀ α → r α ≡ r' α) → r' ∈ R
rc₃ r r' rR ex = c₀ , c₁
where
c₀ : pr₁ ∘ r' ∈ P
c₀ = pc₃ _ _ (pr₁ rR) (pr₁⁼ ∘ ex)
c₁ : pr₂ ∘ r' ∈ Q
c₁ = qc₃ _ _ (pr₂ rR) (pr₂ˣ⁼ ∘ ex)
\end{code}
\begin{code}
infixr 3 _⇒_
_⇒_ : Space → Space → Space
X ⇒ Y = Map X Y , R , rc₀ , rc₁ , rc₂ , rc₃
where
R : Subset(₂ℕ → Map X Y)
R r = ∀(p : ₂ℕ → U X) → p ∈ Probe X → ∀(t : ₂ℕ → ₂ℕ) → t ∈ C →
(λ α → (pr₁ ∘ r)(t α)(p α)) ∈ Probe Y
rc₀ : ∀(φ : Map X Y) → (λ α → φ) ∈ R
rc₀ (φ , cφ) p pP t uc = cφ p pP
rc₁ : ∀(t : ₂ℕ → ₂ℕ) → t ∈ C → ∀(r : ₂ℕ → Map X Y) → r ∈ R → r ∘ t ∈ R
rc₁ t uc r rR p pP t' uc' = rR p pP (t ∘ t') (Lemma[∘-UC] t uc t' uc')
rc₂ : ∀(r : ₂ℕ → Map X Y) →
(Σ \(n : ℕ) → ∀(s : ₂Fin n) → (r ∘ (cons s)) ∈ R) → r ∈ R
rc₂ r (n , ps) p pP t uc = cond₂ Y (λ α → (pr₁ ∘ r)(t α)(p α)) (m , prf)
where
m : ℕ
m = pr₁ (Theorem[Coverage-axiom] n t uc)
prf : ∀(s : ₂Fin m) → (λ α → (pr₁ ∘ r)(t(cons s α))(p(cons s α))) ∈ Probe Y
prf s = cond₃ Y _ _ claim₀ claim₁
where
s' : ₂Fin n
s' = pr₁ (pr₂ (Theorem[Coverage-axiom] n t uc) s)
t' : ₂ℕ → ₂ℕ
t' = pr₁ (pr₂ (pr₂ (Theorem[Coverage-axiom] n t uc) s))
uc' : t' ∈ C
uc' = pr₁ (pr₂ (pr₂ (pr₂ (Theorem[Coverage-axiom] n t uc) s)))
eq : ∀(α : ₂ℕ) → cons s' (t' α) ≡ t (cons s α)
eq α = (pr₂ (pr₂ (pr₂ (pr₂ (Theorem[Coverage-axiom] n t uc) s))) α)⁻¹
psX : (p ∘ (cons s)) ∈ Probe X
psX = cond₁ X (cons s) (Lemma[cons-UC] s) p pP
claim₀ : (λ α → (pr₁ ∘ r)(cons s' (t' α))(p(cons s α))) ∈ Probe Y
claim₀ = ps s' (p ∘ (cons s)) psX t' uc'
claim₁ : ∀(α : ₂ℕ) → (pr₁ ∘ r)(cons s' (t' α))(p(cons s α))
≡ (pr₁ ∘ r)(t(cons s α))(p(cons s α))
claim₁ α = fun-ap (ap (pr₁ ∘ r) (eq α)) (p(cons s α))
rc₃ : ∀(r r' : ₂ℕ → Map X Y) → r ∈ R → (∀ α → r α ≡ r' α) → r' ∈ R
rc₃ r r' rR ex p pX t tC = cond₃ Y _ _ (rR p pX t tC) ex'
where
ex' : ∀(α : ₂ℕ) → (pr₁ ∘ r)(t α)(p α) ≡ (pr₁ ∘ r')(t α)(p α)
ex' α = fun-ap (ap pr₁ (ex (t α))) (p α)
\end{code}
\begin{code}
continuous-pair : (X Y Z : Space)
→ Map X Y → Map X Z → Map X (Y ⊗ Z)
continuous-pair X Y Z (f , cf) (g , cg) = (fg , cfg)
where
fg : U X → U (Y ⊗ Z)
fg x = (f x , g x)
cfg : continuous X (Y ⊗ Z) fg
cfg p pX = cf p pX , cg p pX
continuous-pr₁ : (X Y Z : Space) → Map X (Y ⊗ Z) → Map X Y
continuous-pr₁ X Y Z (w , cw) = pr₁ ∘ w , (λ p pX → pr₁ (cw p pX))
continuous-pr₂ : (X Y Z : Space) → Map X (Y ⊗ Z) → Map X Z
continuous-pr₂ X Y Z (w , cw) = pr₂ ∘ w , (λ p pX → pr₂ (cw p pX))
continuous-λ : (X Y Z : Space) → Map (X ⊗ Y) Z → Map X (Y ⇒ Z)
continuous-λ X Y Z (f , cf) = g , cg
where
g : U X → U(Y ⇒ Z)
g x = h , ch
where
h : U Y → U Z
h y = f(x , y)
ch : continuous Y Z h
ch q qY = cf r rXY
where
r : ₂ℕ → U X × U Y
r α = (x , q α)
rXY : r ∈ Probe (X ⊗ Y)
rXY = cond₀ X x , qY
cg : continuous X (Y ⇒ Z) g
cg p pX q qY t uct = cf r rXY
where
r : ₂ℕ → U X × U Y
r α = (p(t α) , q α)
rXY : r ∈ Probe (X ⊗ Y)
rXY = cond₁ X t uct p pX , qY
continuous-app : (X Y Z : Space) → Map X (Y ⇒ Z) → Map X Y → Map X Z
continuous-app X Y Z (f , cf) (a , ca) = (fa , cfa)
where
fa : U X → U Z
fa x = pr₁ (f x) (a x)
cfa : continuous X Z fa
cfa p pX = cf p pX (a ∘ p) (ca p pX) id Lemma[id-UC]
\end{code}