We call the following type the Curry–Howard interpretation of Brouwer's continuity principle

(CH-Cont)
$$\Pi(f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N})(\alpha:\mathbb{N}^{\mathbb{N}}). \ \Sigma(n:\mathbb{N}). \ \Pi(\beta:\mathbb{N}^{\mathbb{N}}). \ \alpha=_n\beta\to f(\alpha)=f(\beta).$$

Theorem. In intensional Martin-Löf type theory (with Π, Σ, Id),

$$CH - Cont \rightarrow 0 = 1$$
.

Proof.

1. Assuming CH-Cont, we get a modulus-of-continuity functional

$$M: (\mathbb{N}^{\mathbb{N}} \to \mathbb{N}) \to \mathbb{N}$$

assigning a modulus M(f) to f at the point 0^{ω} , where

- 0^{ω} is the infinite sequence of zeros (0), and
- $0^n k^{\omega}$ consists of n zeros followed by infinitely many k's (n zeros-and-then k).
- Fact (i): $(0^n k^{\omega})(n) = k$ (zeros-and-then-spec₀).
- Fact (ii): $0^{\omega} =_n 0^n k^{\omega}$ (zeros-and-then-spec₁).
- 2. Let $m = M(\lambda \alpha.0)$. Define $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ by $f(\beta) = M(\lambda \alpha.\beta(\alpha m))$.
- 3. By expanding the definitions (which involves the ξ -rule), we get

$$f(0^{\omega}) = M(\lambda \alpha.0^{\omega}(\alpha m)) = M(\lambda \alpha.0) = m \quad (claim_0).$$

4. By the definition of M, we have

$$\Pi(\beta:\mathbb{N}^{\mathbb{N}}).\ 0^{\omega}=_{M(f)}\beta\to m=f\beta\quad (\mathtt{claim}_1).$$

5. Choosing $\beta = 0^{M(f)+1}1^{\omega}$, we have

$$0^{\omega} =_{M(f)} \beta$$
 (claim₂)

and hence

$$m = f(\beta)$$
 (claim₃).

6. By the continuity of $\lambda \alpha.\beta(\alpha m)$, we get

$$\Pi(\alpha:\mathbb{N}^{\mathbb{N}}). \ 0^{\omega} =_m \alpha \to \beta 0 = \beta(\alpha m) \quad (\mathtt{claim}_4).$$

7. Choosing $\alpha = 0^m (M(f) + 1)^{\omega}$, we have

$$0^{\omega} =_m \alpha \quad (\mathtt{claim}_5)$$

and hence

$$0 = \beta 0 = \beta(\alpha m) = \beta(M(f) + 1) = 1$$
 (goal).