Overview	Gödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
0000000	0000	00	0000000	000000000000000000000000000000000000000	0

Various Approaches to Computing Moduli of Continuity

Chuangjie Xu

fortiss GmbH

26 September – 1 October 2022 Proof and Computation, Fischbachau

The Continuity Principles

In Brouwerian intuitionistic mathematics,

▶ all functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ are continuous, i.e.

 $\forall (f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}).\forall (\alpha:\mathbb{N}^{\mathbb{N}}).\exists (m:\mathbb{N}).\forall (\beta:\mathbb{N}^{\mathbb{N}}).\,(\alpha=_{m}\beta\to f\alpha=f\beta)$

▶ all functions $2^{\mathbb{N}} \to \mathbb{N}$ are uniformly continuous, i.e.

 $\forall (f: 2^{\mathbb{N}} \to \mathbb{N}). \exists (m: \mathbb{N}). \forall (\alpha, \beta: 2^{\mathbb{N}}). (\alpha =_m \beta \to f\alpha = f\beta)$

where B^A stands for $A \to B$, and $\alpha =_m \beta$ for $\forall (i < m) . \alpha_i = \beta_i$.

Continuity of System T-Definable Functions

Theorem.

- ▶ All functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ definable in Gödel's System T are continuous.
- And their restriction to $2^{\mathbb{N}}$ are uniformly continuous.

This talk is to give a brief overview of various proofs of this fact, with a focus on their computational content, i.e., how moduli of continuity are computed.

Why am I interested in it?

- Relate different proofs via their computational content
- Generalize the methods for other purposes

But I don't know which proof is the first. And I don't know any applications.

Moduli of Continuity

A function $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is continuous if

 $\forall (\alpha:\mathbb{N}^{\mathbb{N}}). \exists (m:\mathbb{N}). \forall (\beta:\mathbb{N}^{\mathbb{N}}). \ (\alpha =_{m} \beta \rightarrow f\alpha = f\beta) \,.$

We call m a modulus of continuity of f at α .

A function $M: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is called a modulus of continuity of $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ if $M\alpha$ is the modulus of continuity of f at α for all $\alpha: \mathbb{N}^{\mathbb{N}}$, i.e.,

$$\forall (\alpha, \beta : \mathbb{N}^{\mathbb{N}}). \ (\alpha =_{M\alpha} \beta \to f\alpha = f\beta).$$

We will explore various methods to compute moduli of continuity of functions that are definable in System T.

Continuity Proofs: Syntactic Approaches

Proving certain property by induction on T terms (without using models)

- ► A. S. Troelstra, editor. *Metamathematical investigation of intuitionistic arithmetic and analysis.* Springer-Verlag, Berlin, 1973.
- Ulrich Kohlenbach. Pointwise hereditary majorization and some applications. Archive for Mathematical Logic, 31(4):227–241, 1992.
- ► Thomas Powell. A functional interpretation with state. LICS'18, pp. 839–848, 2018.
- Chuangjie Xu. A Gentzen-style monadic translation of Gödel's System T. FSCD'20, pp. 30:1–30:17, 2020.

Continuity Proofs: Semantic Approaches

Operational semantics

Thierry Coquand and Guilhem Jaber. A computational interpretation of forcing in type theory. In *Epistemology versus Ontology*, vol. 27, pp. 203–213. Springer Netherlands, 2012.

Denotational models

Martín Escardó. Continuity of Gödel's system T functionals via effectful forcing. MFPS'13, Electronic Notes in Theoretical Computer Science, vol. 298, pp. 119–141, 2013.

Sheaf models such as

- Peter Johnstone. On a topological topos, Proceedings of the London Mathematical Society, s3-38:237-271, 1979.
- Michael P. Fourman. Continuous truth I, non-constructive objects. Logic Colloquium '82, pp. 161–180. Elsevier, 1984.
- Gerrit van der Hoeven and leke Moerdijk. Sheaf models for choice sequences. Annals of Pure and Applied Logic, 27(1):63–107, 1984.
- Martín Escardó and Chuangjie Xu. A constructive manifestation of the Kleene–Kreisel continuous functionals. Annals of Pure and Applied Logic, 167(9):770–793, 2016.

Continuity Proofs: Computational Effects

- ► Andrej Bauer. Sometimes all functions are continuous. Blog. 2006.
- Vincent Rahli and Mark Bickford. A nominal exploration of intuitionism. CPP'16. 2016.
- Liron Cohen and Vincent Rahli. Realizing Continuity Using Stateful Computations. 2022.

Overview	Gödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
000000	0000	00	0000000	000000000000000000000000000000000000000	0

Computing Moduli of Continuity: Evaluation Strategies

Call by name: [Escardó 2013], [Xu 2020], ...

Call by value: [Coquand&Jaber 2012], [Powell 2018], ...

Gödel's System T

We work with (the term language of) Gödel's System T in its λ -calculus form

T \equiv simply typed λ -calculus + Nat + primitive recursor.

It can be given by

 $\begin{array}{rrrr} \mathsf{Type} & \sigma,\tau &:= & \mathsf{Nat} & \mid \sigma \to \tau \\ \mathsf{Term} & t,u &:= & x & \mid \lambda x.t & \mid tu & \mid 0 & \mid \operatorname{succ} & \mid \operatorname{rec}_{\sigma} \end{array}$

with the following typing rules:

where the context Γ is a list of distinct typed variables $x : \sigma$.

Gödel's System T: Some Conventions

We refer to only the well-typed terms $\Gamma \vdash t : \tau$.

We may omit the context and write $t : \tau$ or t^{τ} or just t.

We may omit the type script and write rec.

We may write

- $\lambda x_1 x_2 \cdots x_n t$ instead of $\lambda x_1 \lambda x_2 \cdots \lambda x_n t$;
- $f(a_1, a_2, \cdots, a_n)$ instead of $(((fa_1)a_2)\cdots)a_n$;
- n+1 instead of succ(n);
- τ^{σ} instead of $\sigma \to \tau$;

Gödel's System T: Example

Using the primitive recursor, we can for instance define the function

 $\max:\mathsf{Nat}\to\mathsf{Nat}\to\mathsf{Nat}$

that returns the greater argument by

 $\max := \operatorname{rec}_{\mathsf{Nat}\to\mathsf{Nat}} \left(\lambda n.n, \ \lambda nf.\operatorname{rec}_{\mathsf{Nat}}(n+1,\lambda mg.fm+1)\right)$

One can easily verify that the usual defining equations of max

 $\max(0, n) = n \quad \max(m, 0) = m \quad \max(m + 1, n + 1) = \max(m, n) + 1$

using the computation rules of rec

rec(a, f, 0) = a rec(a, f, n + 1) = f(n, rec(a, f, n)).

Gödel's System T: Standard Interpretation

System T can be modeled by any cartesian closed category with a natural numbers object.

In particular, we can interpret System T into the meta-language, where types are interpreted by

 $\llbracket \mathsf{Nat} \rrbracket := \mathbb{N}$ $\llbracket \sigma \to \tau \rrbracket := \llbracket \sigma \rrbracket \to \llbracket \tau \rrbracket$

and terms $x_1 : \sigma_1, \dots, x_n : \sigma_n \vdash t : \tau$ as functions $\llbracket \sigma_1 \rrbracket \times \dots \times \llbracket \sigma_n \rrbracket \to \llbracket \tau \rrbracket$ by recursion on t.

A function f is T-definable if we can fine a term t in T such $f = \llbracket t \rrbracket$.

When referring to a T-definable function, we required the term t to be given explicitly.

Computing Moduli of Continuity via Exception Handling

We extend System T with effects such as exceptions^{1,2}.

To compute the modulus of continuity of a pure $f:(\mathsf{Nat}\to\mathsf{Nat})\to\mathsf{Nat}$ at an input $\alpha:\mathsf{Nat}\to\mathsf{Nat},$ we

• generate an impure input β that

- returns αi if i < k
- throws an exception otherwise

for some parameter k, and

- try to compute $f\beta$ from k = 0
 - if it throws an exception, we catch it and try with k + 1.

At some point no exception happens. Then we know that the current value of k is a modulus of continuity.

¹http://math.andrej.com/2006/03/27/sometimes-all-functions-are-continuous/ ²Vincent Rahli and Mark Bickford. A nominal exploration of intuitionism. CPP'16.

Computing Moduli of Continuity via Exception Handling (cont.)

Why does this procedure of computing k terminate?

All terms of System T are total.

- Any closed term of type Nat is evaluated to some numeral succⁿ(0) in finite steps.
- The computation of fα terminates, meaning that only finite parts of α can be accessed by f.
- A big enough k can be reached so that $f\beta$ also terminates.

The procedure $\alpha \mapsto k$ is not a pure program, i.e., the modulus is not a T term. It does not seem efficient.

Overview	Gödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
0000000	0000	00	0000000	000000000000000000000000000000000000000	0

Continuity via Denotational Semantics

Idea: Suppose we have a model \mathcal{M} .

$$f = \llbracket t \rrbracket \sim \llbracket t \rrbracket_{\mathcal{M}} \implies f \text{ is continuous}$$

- Interpret terms t by $\llbracket t \rrbracket_{\mathcal{M}}$ in the model \mathcal{M} .
- ▶ Relate the two interpretations with some logical relation [[t]] ~ [[t]]_M by induction on t.
- Derive continuity of $\llbracket t \rrbracket$ from the proof of $\llbracket t \rrbracket \sim \llbracket t \rrbracket_{\mathcal{M}}$.

Overview God	del's System I	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
0000000 00	000	00	0000000	000000000000000000000000000000000000000	0

Escardó's Dialogue Trees

The type $\tilde{\mathbb{N}}$ of Dialogue trees³ (for natural numbers) is inductively generated by

 $\eta:\mathbb{N}\to\tilde{\mathbb{N}}\qquad\beta:(\mathbb{N}\to\tilde{\mathbb{N}})\to\mathbb{N}\to\tilde{\mathbb{N}}$

Dialogue trees are decoded with an oracle $\alpha : \mathbb{N}^{\mathbb{N}}$ as follows:

dialogue : $\tilde{\mathbb{N}} \to (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ dialogue $(\eta \ n) \ \alpha = n$ dialogue $(\beta \ \Phi \ x) \ \alpha =$ dialogue $(\Phi(\alpha x)) \ \alpha$

One can construct a function $\Omega: \tilde{\mathbb{N}} \to \tilde{\mathbb{N}}$, called a generic sequence, that codes any concrete sequence α , i.e.,

$$\operatorname{dialogue}(-,\alpha) \bigcup_{\mathbb{N}} \underbrace{\begin{array}{c} \Omega \\ & \longrightarrow \\ \mathbb{N} \end{array}}_{\mathbb{N}} \bigcup_{\alpha \longrightarrow \\ \mathbb{N}} \operatorname{dialogue}(-,\alpha)$$

³Martín Escardó. Continuity of Gödel's system T functionals via effectful forcing. MFPS'13.

Continuity via Dialogue Trees

We interpret System T using Dialogue trees

 $\llbracket \mathsf{Nat} \rrbracket_{\mathcal{D}} := \tilde{\mathbb{N}}$ $\llbracket \sigma \to \tau \rrbracket_{\mathcal{D}} := \llbracket \sigma \rrbracket_{\mathcal{D}} \to \llbracket \tau \rrbracket_{\mathcal{D}}$

(The interpretation of terms is omitted.)

Lemma. For all $f : (Nat \to Nat) \to Nat$, we have for all $\alpha : \mathbb{N}^{\mathbb{N}}$ $\llbracket f \rrbracket(\alpha) = \operatorname{dialogue}(\llbracket f \rrbracket_{\mathcal{D}}(\Omega))(\alpha).$

Lemma. For any dialogue tree d, its decodification $\mathrm{dialogue}(d):\mathbb{N}^{\mathbb{N}}\to\mathbb{N}$ is continuous.

Theorem. All T-definable function $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ are continuous.

Uniform Continuity

A function $f: 2^N \to N$ is uniformly continuous if there is an m: N, called the modulus of uniform continuity, such that

$$\forall (\alpha, \beta : 2^{\mathbb{N}}). \ (\alpha =_m \beta \to f\alpha = f\beta).$$

Goal: Use C-spaces⁴ to show that all functions $\mathbb{2}^{\mathbb{N}} \to \mathbb{N}$ that are definable in System T (extended with Booleans) are uniformly continuous.

The construction of C-spaces needs uniformly continuous endofunctions on $2^{\mathbb{N}}$. A function $f : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is uniformly continuous if

 $\forall (n:\mathbb{N}). \exists (m:\mathbb{N}). \forall (\alpha,\beta:2^{\mathbb{N}}). \ (\alpha =_m \beta \to f\alpha =_n f\beta) \, .$

Let C be the set of uniformly continuous maps $2^{\mathbb{N}} \to 2^{\mathbb{N}}$.

Various Approaches to Computing Moduli of Continuity

⁴Martín Escardó and Chuangjie Xu. A constructive manifestation of the Kleene–Kreisel continuous functionals. APAL, 167(9):770–793, 2016.

Overview	Gödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
0000000	0000	00	00000000	000000000000000000000000000000000000000	0

C-Spaces

A C-space is a set X equipped with a C-topology P, that is, a collection of maps $\mathfrak{D}^{\mathbb{N}} \to X$, called probes, satisfying the following conditions:

- ► All constant maps are in *P*.
- If $p \in P$ and $t : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is uniformly continuous, then $p \circ t \in P$.
- For any $p_0, p_1 \in P$, the map $p : 2^{\mathbb{N}} \to X$ defined by $p(\alpha) = p_{\alpha_0}(\lambda i.\alpha_{i+1})$ is in P.

A C-continuous map from (X, P) to (Y, Q) is a map $f : X \to Y$ such that if $p \in P$ then $f \circ p \in Q$.

C-Spaces (cont.)

Theorem. The category of C-spaces is cartesian closed.

The C-space $(\mathbb{N}, P_{\mathbb{N}})$ a natural numbers object and $(2, P_2)$ the coproduct of the terminal object, where P_X is the set of uniformly continuous maps into X.

The exponent $(2, P_2)^{(\mathbb{N}, P_{\mathbb{N}})}$ is the internal Cantor space of C-spaces.

Lemma. The identity map on $\mathbb{2}^{\mathbb{N}}$ is a probe on $(\mathbb{2}, P_2)^{(\mathbb{N}, P_{\mathbb{N}})}$. We denote this probe by Ω , i.e., the identity map with a continuity proof.

Yoneda Lemma. If $f : (2, P_2)^{(\mathbb{N}, P_{\mathbb{N}})} \to (X, P)$ is C-continuous then $f \circ \Omega \in P$. Note that f is (pointwise) equal to $f \circ \Omega$.

(The Yoneda lemma actually says more than above.)

Uniform Continuity via C-Spaces

We interpret System T in C-spaces by

$$\begin{split} \llbracket \mathsf{Nat} \rrbracket_{\mathcal{C}} &:= (\mathbb{N}, P_{\mathbb{N}}) \\ \llbracket \mathsf{Bool} \rrbracket_{\mathcal{C}} &:= (2, P_2) \\ \llbracket \sigma \to \tau \rrbracket_{\mathcal{C}} &:= \llbracket \tau \rrbracket_{\mathcal{C}}^{\llbracket \sigma \rrbracket_{\mathcal{C}}} \end{split}$$

and terms by C-continuous maps.

Lemma. For any closed term $f:(\mathsf{Nat}\to\mathsf{Bool})\to\mathsf{Nat}$ in System T, its interpretation $[\![f]\!]_{\mathcal{C}}:(2,P_2)^{(\mathbb{N},P_\mathbb{N})}\to(\mathbb{N},P_\mathbb{N})$ is a C-continuous map.

We have $\llbracket f \rrbracket$ pointwise equal to $\llbracket f \rrbracket_{\mathcal{C}}$, and thus also to $\llbracket f \rrbracket_{\mathcal{C}} \circ \Omega$.

Theorem. Any T-definable function $2^{\mathbb{N}} \to \mathbb{N}$ is uniformly continuous.

Proof. By the Yoneda Lemma, $\llbracket f \rrbracket_{\mathcal{C}} \circ \Omega$ is a probe on \mathbb{N} , that is, a uniformly continuous map. Because pointwise equality preserves continuity, $\llbracket f \rrbracket$ is also uniformly continuous.

C-Spaces Can Do More!

The development of C-spaces is constructive. Thus we can extract a program to compute moduli of uniform continuity of T-definable functions.

There is a C-continuous map that interprets the fan functional

 $\mathrm{fan}:(\mathsf{Bool}^{\mathsf{Nat}}\to\mathsf{Nat})\to\mathsf{Nat}$

which computes the least moduli of uniform continuity.

C-spaces also form a model of Martin-Löf type theory without universe.

Continuity via Syntactic Translation

Idea:

$$f = \llbracket t \rrbracket \sim \llbracket t^T \rrbracket \implies f \text{ is continuous}$$

$$\stackrel{\uparrow}{\underset{t}{\underset{t}{\longmapsto}}} \stackrel{\uparrow}{\underset{t}{\longrightarrow}} t^T \in T$$

- ▶ Relate the standard interpretations of the term and its translation with some logical relation $[t_1] \sim [t^T]$ by induction on t.
- ▶ Derive continuity of [[t]] from the proof of [[t]] ~ [[t^T]]. Derive a term from t^T that internalizes the modulus of continuity.

	oyseem i via Exceptio	in nanuning via Denotational	Semantics Via Syntactic Translation Summa	ary
000000 0000	00	0000000	000000000000000000000000000000000000000	

One Translation of System T

We want to translate Nat to pairs of terms of type $(Nat \rightarrow Nat) \rightarrow Nat$, where the second term is a modulus of continuity of the first term⁵.

For convenience, we extend System T with products (\times , pair, pr₁, pr₂).

For each finite type ρ we associate inductively a new one $\rho^{\rm b}$ as

$$\begin{split} \mathsf{Nat}^{\mathrm{b}} &:= ((\mathsf{Nat} \to \mathsf{Nat}) \to \mathsf{Nat}) \times ((\mathsf{Nat} \to \mathsf{Nat}) \to \mathsf{Nat}) \\ (\sigma \to \tau)^{\mathrm{b}} &:= \sigma^{\mathrm{b}} \to \tau^{\mathrm{b}}. \end{split}$$

We write $w \equiv \langle V_w; M_w \rangle$ for $w : Nat^{\rm b}$ and define $(t: \rho) \mapsto (t^{\rm b}: \rho^{\rm b})$ by

 $(x)^{\mathbf{b}} := x^{\mathbf{b}} \qquad 0^{\mathbf{b}} := \langle \lambda \alpha.0; \lambda \alpha.0 \rangle$ $(\lambda x.u)^{\mathbf{b}} := \lambda x^{\mathbf{b}}.u^{\mathbf{b}} \qquad \operatorname{succ}^{\mathbf{b}} := \lambda x. \langle \operatorname{succ} \circ \mathbf{V}_{x}; \mathbf{M}_{x} \rangle$ $(fa)^{\mathbf{b}} := f^{\mathbf{b}}a^{\mathbf{b}} \qquad \operatorname{rec}^{\mathbf{b}} := ???$

⁵Chuangjie Xu. A syntactic approach to continuity of T-definable functionals. LMCS, 16(1): 22:1–22:11, 2020.

Various Approaches to Computing Moduli of Continuity

 Overview	Gödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
0000000	0000	00	0000000	000000000000000000000000000000000000000	0

Translate Primitive Recursors

The translation $\operatorname{rec}^{\mathrm{b}}: \rho^{\mathrm{b}} \to (\operatorname{Nat}^{\mathrm{b}} \to \rho^{\mathrm{b}} \to \rho^{\mathrm{b}}) \to \operatorname{Nat}^{\mathrm{b}} \to \rho^{\mathrm{b}}$ has to preserve the computational rules of rec, i.e.,

 $\operatorname{rec}^{\mathrm{b}}(a)(f)(0^{\mathrm{b}}) = a \qquad \operatorname{rec}^{\mathrm{b}}(a)(f)(\operatorname{succ}\,n)^{\mathrm{b}} = f(n^{\mathrm{b}})(\operatorname{rec}^{\mathrm{b}}(a)(f)(n^{\mathrm{b}})).$

A candidate for $\operatorname{rec}^{\mathrm{b}}(a)(f)$ is $\operatorname{rec}(a)(\lambda k.f(\langle \lambda \alpha.k; \lambda \alpha.0 \rangle)): \operatorname{Nat} \to \rho^{\mathrm{b}}$.

We can extend $g: \operatorname{Nat} \to \rho^{\mathrm{b}}$ to $g^*: \operatorname{Nat}^{\mathrm{b}} \to \rho^{\mathrm{b}}$ such that $\forall i. \ g^*(i^{\mathrm{b}}) = g(i)$ by induction on ρ – the Kleisli extension

$$\begin{split} &\mathrm{ke}^{\mathrm{Nat}} := \lambda g^{\mathrm{Nat} \to \mathrm{Nat}^{\mathrm{b}}} w^{\mathrm{Nat}^{\mathrm{b}}} . \langle \lambda \alpha. \mathrm{V}_{g(\mathrm{V}_w \alpha)} \alpha \, ; \, \lambda \alpha. \mathrm{max}(\mathrm{M}_{g(\mathrm{V}_w \alpha)} \alpha, \mathrm{M}_w \alpha) \rangle \\ &\mathrm{ke}^{\sigma \to \tau} := \lambda g^{\mathrm{Nat} \to \sigma^{\mathrm{b}} \to \tau^{\mathrm{b}}} w^{\mathrm{Nat}^{\mathrm{b}}} x^{\sigma^{\mathrm{b}}} . \mathrm{ke}^{\tau} (\lambda k^{\mathrm{Nat}}. g(k, x), w). \end{split}$$

Hence, we define

$$\operatorname{rec}^{\mathrm{b}} := \lambda a f.\operatorname{ke}(\operatorname{rec}(a)(\lambda k.f(\langle \lambda \alpha.k; \lambda \alpha.0 \rangle))).$$

Continuity via the Translation

We define the following parameterized logical relation $R^{\alpha}_{\rho} \subseteq \llbracket \rho \rrbracket \times \llbracket \rho^{b} \rrbracket$ for a given $\alpha : \mathbb{N}^{\mathbb{N}}$ by induction on ρ

$$\begin{split} n \ \mathbf{R}^{\alpha}_{\mathsf{Nat}} \ (f, M) \ &:= \ f\alpha = n \land \forall (\beta : \mathbb{N}^{\mathbb{N}}) . (\alpha =_{M\alpha} \beta \to f\alpha = f\beta) \\ g \ \mathbf{R}^{\alpha}_{\sigma \to \tau} \ h \ &:= \ \forall x^{\llbracket \sigma \rrbracket} y^{\llbracket \sigma^{\mathbb{b}} \rrbracket} \left(x \ \mathbf{R}^{\alpha}_{\sigma} \ y \to gx \ \mathbf{R}^{\alpha}_{\tau} \ hy \right). \end{split}$$

Lemma. For any term $t : \rho$ in T, we have $\llbracket t \rrbracket \mathbb{R}^{\alpha}_{\rho} \llbracket t^{b} \rrbracket$ for any $\alpha : \mathbb{N}^{\mathbb{N}}$.

We define a term Ω : Nat^b \rightarrow Nat^b internalizing the generic sequence by $\Omega := \lambda w^{\text{Nat}^{\text{b}}} \langle \lambda \alpha. \alpha(V_w \alpha); \lambda \alpha. \max(V_w \alpha + 1, M_w \alpha) \rangle.$

Theorem. All T-definable function $\mathbb{N}^{\mathbb{N}}\to\mathbb{N}$ has a T-definable modulus of continuity.

Proof. For any $\alpha : \mathbb{N}^{\mathbb{N}}$, we have $\alpha \operatorname{R}^{\alpha}_{\operatorname{Nat} \to \operatorname{Nat}} \llbracket \Omega \rrbracket$ and thus $\llbracket f \rrbracket \alpha \operatorname{R}^{\alpha}_{\operatorname{Nat}} \llbracket f^{\operatorname{b}} \Omega \rrbracket$, i.e., $\llbracket M_{f^{\operatorname{b}} \Omega} \rrbracket$ is a modulus of continuity of $\llbracket f \rrbracket$ for all term $f : (\operatorname{Nat} \to \operatorname{Nat}) \to \operatorname{Nat}$.

The Translation is Gentzen Style!

Write $J(\rho) \equiv ((\mathsf{Nat} \to \mathsf{Nat}) \to \rho) \times ((\mathsf{Nat} \to \mathsf{Nat}) \to \mathsf{Nat}).$

The translation of types of T (extended with products and sums) becomes

$$\begin{split} \mathsf{Nat}^{\mathrm{b}} &:= J(\mathsf{Nat}) & (\sigma \to \tau)^{\mathrm{b}} := \sigma^{\mathrm{b}} \to \tau^{\mathrm{b}} \\ (\sigma + \tau)^{\mathrm{b}} &:= J(\sigma^{\mathrm{b}} + \tau^{\mathrm{b}}) & (\sigma \times \tau)^{\mathrm{b}} := \sigma^{\mathrm{b}} \times \tau^{\mathrm{b}} \end{split}$$

It's in the style of Gentzen's negative translation!

$$P^{G} := \neg \neg P \qquad (\phi \to \psi)^{G} := \phi^{G} \to \psi^{G}$$
$$(\phi \lor \psi)^{G} := \neg \neg (\phi^{G} \lor \psi^{G}) \qquad (\phi \land \psi)^{G} := \phi^{G} \land \psi^{G}$$
$$(\exists x.\phi)^{G} := \neg \neg (\exists x.\phi^{G}) \qquad (\forall x.\phi)^{G} := \forall x.\phi^{G}$$

The soundness theorem says $\operatorname{CL} \vdash \phi \iff \operatorname{ML} \vdash \phi^{\operatorname{G}}$.

A Generalization of Gentzen's Negative Translation

Gentzen's Translation can be generalized^{6,7,8} by replacing $\neg\neg$ by a nucleus, that is, an endofunction j on formulas such that the followings are provable

 $\phi \to j\phi \qquad (\phi \to j\psi) \to j\phi \to j\psi \qquad (j\phi)[t/x] \leftrightarrow j(\phi[t/x])$

The translation becomes

$$\begin{split} P_{j}^{\mathrm{G}} &:= jP & (\phi \to \psi)_{j}^{\mathrm{G}} := \phi_{j}^{\mathrm{G}} \to \psi_{j}^{\mathrm{G}} \\ (\phi \lor \psi)_{j}^{\mathrm{G}} &:= j(\phi_{j}^{\mathrm{G}} \lor \psi_{j}^{\mathrm{G}}) & (\phi \land \psi)_{j}^{\mathrm{G}} := \phi_{j}^{\mathrm{G}} \land \psi_{j}^{\mathrm{G}} \\ (\exists x.\phi)_{j}^{\mathrm{G}} &:= j(\exists x.\phi_{j}^{\mathrm{G}}) & (\forall x.\phi)_{j}^{\mathrm{G}} := \forall x.\phi_{j}^{\mathrm{G}} \end{split}$$

Working with different nuclei, we have

 $\begin{array}{ll} \bullet & \text{if } j\phi = \neg \neg \phi, & \text{then } \mathrm{CL} \vdash \phi \implies \mathrm{ML} \vdash \phi_j^\mathrm{G}; \\ \bullet & \text{if } j\phi = (\phi \to X) \to X, \text{ then } \mathrm{CL} \vdash \phi \implies \mathrm{IL} \vdash \phi_j^\mathrm{G}; \\ \bullet & \text{if } j\phi = \phi \lor \bot, & \text{then } \mathrm{IL} \vdash \phi \implies \mathrm{ML} \vdash \phi_j^\mathrm{G}. \end{array}$

⁶Hajime Ishihara. A Note on the Gödel–Gentzen Translation. MLQ, 46(1):135–137, 2000.
 ⁷Martń Escardó and Paulo Oliva. The Peirce translation. APAL, 163(6):681–692, 2012.
 ⁸Benno van den Berg. A Kuroda-style j-translation. AML, 58(5-6):627–634, 2019.

A Gentzen-Style Translation of System T

We generalize the translation of T (without sum type for simplicity).

A nucleus (JNat, η , κ) consists of a type JNat and two T terms

 $\eta: \mathsf{Nat} \to \mathsf{JNat} \qquad \kappa: (\mathsf{Nat} \to \mathsf{JNat}) \to \mathsf{JNat} \to \mathsf{JNat}.$

 $\begin{array}{ll} \mbox{Given (JNat, \eta, \kappa), we translate types $\sigma \mapsto \sigma^{\rm J}$ by} \\ \mbox{Nat}^{\rm J} := \mbox{JNat} & (\sigma \to \tau)^{\rm J} := \sigma^{\rm J} \to \tau^{\rm J} & (\sigma \times \tau)^{\rm J} := \sigma^{\rm J} \times \tau^{\rm J} \\ \mbox{and terms } (t:\sigma) \mapsto (t^{\rm J}:\sigma^{\rm J})$ by} \\ \mbox{0}^{\rm J} := \eta(0) & (x)^{\rm J} := x^{\rm J} & {\rm pair}^{\rm J} := {\rm pair} \\ \mbox{succ}^{\rm J} := \kappa(\eta \circ {\rm succ}) & (\lambda x.t)^{\rm J} := \lambda x^{\rm J}.t^{\rm J} & {\rm pr}_i := {\rm pr}_i \\ \mbox{rec}^{\rm J} := \lambda a f. {\rm ke}({\rm rec}(a, f \circ \eta)) & (tu)^{\rm J} := t^{\rm J} u^{\rm J} \end{array}$

Overview	Gödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
0000000	0000	00	0000000	000000000000000000000000000000000000000	0

Kleisli Extension

Given $a: \rho^{\mathrm{J}}$ and $f: \mathrm{JNat} \to \rho^{\mathrm{J}} \to \rho^{\mathrm{J}}$, define $\mathrm{rec}^{\mathrm{J}}(a, f): \mathrm{JNat} \to \rho^{\mathrm{J}}$. To extend $\mathrm{rec}(a, f \circ \eta): \mathrm{Nat} \to \rho^{\mathrm{J}}$,

we cannot directly use $\kappa : (Nat \rightarrow JNat) \rightarrow JNat \rightarrow JNat$.

We define a term $ke_\rho:(\mathsf{Nat}\to\rho^J)\to J\mathsf{Nat}\to\rho^J$ of the Kleisli extension by induction on ρ as follows

$$\begin{aligned} & \ker_{\mathsf{Nat}}(f,a) := \kappa(f,a) \\ & \ker_{\sigma \to \tau}(f,a) := \lambda x^{\sigma^{\mathsf{J}}} \cdot \ker_{\tau}(\lambda n.f(n,x),a) \\ & \ker_{\sigma \times \tau}(f,a) := \langle \ker_{\sigma}(\mathrm{pr}_{1} \circ f,a) ; \ker_{\tau}(\mathrm{pr}_{2} \circ f,a) \rangle \end{aligned}$$

and then use it to define rec^{J} .

Fundamental Theorem of Logical Relation

Given $R_{\text{Nat}} \subseteq \mathbb{N} \times [\text{JNat}]$, we extend it a logical relation $R_{\rho} \subseteq [\![\rho]\!] \times [\![\rho^{J}]\!]$ for any type ρ in T inductively by

$$f \operatorname{R}_{\sigma \to \tau} g := \forall x^{\llbracket \sigma \rrbracket} a^{\llbracket \sigma \rrbracket} (x \operatorname{R}_{\sigma} a \to f x \operatorname{R}_{\tau} g a)$$
$$u \operatorname{R}_{\sigma \times \tau} v := (u_1 \operatorname{R}_{\sigma} v_1) \land (u_2 \operatorname{R}_{\tau} v_2)$$

Fundamental theorem of logical relation:

For any closed term $t: \rho$ in System T, we have

 $\llbracket t \rrbracket \mathbf{R}_{\rho} \llbracket t^{\mathrm{J}} \rrbracket$

if R_{Nat} satisfies

 $\forall n(n \ \mathrm{R}_{\mathsf{Nat}} \ [\![\eta]\!]n) \quad \mathsf{and} \quad \forall f^{\mathbb{N} \to \mathbb{N}} g^{\mathbb{N} \to [\![\mathsf{JNat}]\!]} \left(\forall i(fi \ \mathrm{R}_{\mathsf{Nat}} \ gi) \to f \ \mathrm{R}_{\mathsf{Nat} \to \mathsf{Nat}} \ [\![\kappa]\!]g \right).$

0000000 0000 00 0000000 0000000 0000000	Overview	Gödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
	0000000	0000	00	0000000	000000000000000000000000000000000000000	0

Example: Continuity of Functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$

Continuity nucleus $J\mathsf{Nat} = (\mathsf{Nat}^{\mathsf{Nat}} \to \mathsf{Nat}) \times (\mathsf{Nat}^{\mathsf{Nat}} \to \mathsf{Nat})$ with

$$\begin{split} \eta &:= \lambda n^{\mathsf{Nat}}.\langle \lambda \alpha.n \, ; \lambda \alpha.0 \rangle \\ \kappa &:= \lambda g^{\mathsf{Nat} \to \mathsf{JNat}} w^{\mathsf{JNat}}.\langle \lambda \alpha. \mathbf{V}_{g(\mathbf{V}_w \alpha)} \alpha \, ; \lambda \alpha. \max(\mathbf{M}_{g(\mathbf{V}_w \alpha)} \alpha, \mathbf{M}_x \alpha) \rangle \end{split}$$

Generic sequence $\Omega: J\mathsf{Nat} \to J\mathsf{Nat}$ defined by

$$\Omega := \kappa(\lambda n^{\mathsf{Nat}}.\langle \lambda \alpha. \alpha n ; \lambda \alpha. n + 1 \rangle)$$

Continuity relation $R^\alpha_{\mathsf{Nat}}\subseteq \mathbb{N}\times \llbracket J\mathsf{Nat}\rrbracket$ defined by

 $n \operatorname{R}^{\alpha}_{\operatorname{Nat}}(f, M) := f\alpha = n \wedge \forall (\beta : \mathbb{N}^{\mathbb{N}}) . (\alpha =_{M\alpha} \beta \to f\alpha = f\beta)$

Show that R^{α}_{Nat} satisfies

 $\forall n(n \ \mathrm{R}^{\alpha}_{\mathsf{Nat}} \ \llbracket \eta \rrbracket n) \quad \text{and} \quad \forall f^{\mathbb{N} \to \mathbb{N}} g^{\mathbb{N} \to \llbracket \mathsf{JNat} \rrbracket} \left(\forall i(fi \ \mathrm{R}^{\alpha}_{\mathsf{Nat}} \ gi) \to f \ \mathrm{R}^{\alpha}_{\mathsf{Nat} \to \mathsf{Nat}} \ \llbracket \kappa \rrbracket g \right).$

0000000 0000 00 0000000 00000000000000	Overview	Gödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
	0000000	0000	00	0000000	0000000000000000000	0

Example: Uniform Continuity of Functions $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$

We say a map $M:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}$ is a modulus of uniform continuity of $f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}$ if

$$\forall (\gamma : \mathbb{N}^{\mathbb{N}}) (\alpha, \beta \leq \gamma). \ (\alpha =_{M\gamma} \beta \to f\alpha = f\beta)$$

where $\alpha \leq \gamma := \forall i. \alpha_i \leq \gamma_i$.

Theorem. All T-definable function $\mathbb{N}^\mathbb{N}\to\mathbb{N}$ has a T-definable modulus of uniform continuity.

Uniform-continuity nucleus $JNat = (Nat^{Nat} \rightarrow Nat) \times (Nat^{Nat} \rightarrow Nat)$ with

$$\begin{split} \eta &:= \lambda n^{\mathsf{Nat}}.\langle \lambda \alpha.n \, ; \lambda \alpha.0 \rangle \\ \kappa &:= \lambda g^{\mathsf{Nat} \to \mathsf{JNat}} w^{\mathsf{JNat}}.\langle \lambda \alpha. \mathcal{V}_{g(\mathcal{V}_w \alpha)} \alpha \, ; \lambda \alpha. \max(...,..)^9 \rangle \end{split}$$

Uniform-continuity relation $R^\alpha_{\mathsf{Nat}}\subseteq \mathbb{N}\times \llbracket J\mathsf{Nat}\rrbracket$ defined by

 $n \operatorname{R}^{\alpha}_{\operatorname{Nat}}(f,M) \ := \ f\alpha = n \wedge \forall (\beta,\gamma \leq \alpha). (\beta =_{M\alpha} \gamma \to f\beta = f\gamma).$

⁹Agda dev.: https://cj-xu.github.io/agda/GentzenTrans/UniformContinuity.html

Example: Majorizability (bounds of programs)¹⁰

Define a relation $\operatorname{maj}_{\rho} \subseteq \llbracket \rho \rrbracket \times \llbracket \rho \rrbracket$ by

$$\begin{split} n \operatorname{maj}_{\mathsf{Nat}} m &:= n \leq m \\ f \operatorname{maj}_{\sigma \to \tau} g &:= \forall x^{\llbracket \sigma \rrbracket} y^{\llbracket \sigma \rrbracket} \left(x \operatorname{maj}_{\sigma} y \to f x \operatorname{maj}_{\tau} g y \right). \end{split}$$

We say t is majorized by u if $t \max u$, and call u a majorant of t.

Consider the nucleus

$$\mathsf{JNat} := \mathsf{Nat} \qquad \eta(n) := n \qquad \begin{cases} \kappa(g,0) := g(0) \\ \kappa(g,n+1) := \max(\kappa(g,n), g(n+1)). \end{cases}$$

The idea is that JNat is the type of majorants of some numbers.

Theorem. For any $t : \rho$ of T, we have $\llbracket t \rrbracket \operatorname{maj}_{\rho} \llbracket t^{\mathsf{J}} \rrbracket$. Proof. (1) $n \leq \llbracket \eta \rrbracket n = n$. (2) $fi \leq gi \leq \llbracket \kappa \rrbracket (g, j)$ for any $i \leq j$.

¹⁰W. A. Howard. Hereditarily majorizable functionals of finite type. In *Metamathematical Investigation of Intuitionistic Arithmetic and Analysis*, pp. 454–461. Springer, Berlin, 1973.

More Examples

Study specific higher-order objects, e.g. continuity of type 2 functionals

More applications: totally, number of evaluation steps, closure under bar recursion^{11,12}, continuation passing style transformation¹³, trace property analysis¹⁴, runtime monitoring (?), ...

 11 Helmut Schwichtenberg. On bar recursion of types 0 and 1. JSL, 44(3):325–329, 1979. 12 Paulo Oliva and Silvia Steila. A direct proof of Schwichtenberg's bar recursion closure theorem. JSL, 83(1):70–83, 2018.

 ¹³Gilles Barthe and Tarmo Uustalu. CPS translating inductive and coinductive types. PEPM'02.
 ¹⁴Ulrich Schöpp and Chuangjie Xu. A generic type system for featherweight Java. FTfJP'21.

Overview	Gödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
0000000	0000	00	0000000	000000000000000000000000000000000000000	0

Other Negative Translations

Kolmogorov: $\phi \mapsto \phi^{\mathrm{Ko}}$

$$P^{\mathrm{Ko}} := \neg \neg P$$
$$(\phi \lor \psi)^{\mathrm{Ko}} := \neg \neg (\phi^{\mathrm{Ko}} \lor \psi^{\mathrm{Ko}})$$
$$(\exists x. \phi)^{\mathrm{Ko}} := \neg \neg (\exists x. \phi^{\mathrm{Ko}})$$

$$\begin{split} (\phi \to \psi)^{\mathrm{Ko}} &:= \neg \neg (\phi^{\mathrm{Ko}} \to \psi^{\mathrm{Ko}}) \\ (\phi \land \psi)^{\mathrm{Ko}} &:= \neg \neg (\phi^{\mathrm{Ko}} \land \psi^{\mathrm{Ko}}) \\ (\forall x.\phi)^{\mathrm{Ko}} &:= \neg \neg (\forall x.\phi^{\mathrm{Ko}}) \end{split}$$

Kuroda (modified¹⁵): $\phi \mapsto \neg \neg \phi^{\mathrm{Ku}}$

$$P^{\mathrm{Ku}} := P \qquad (\phi \to \psi)^{\mathrm{Ku}} := \phi^{\mathrm{Ku}} \to \neg \neg \psi^{\mathrm{Ku}}$$
$$(\phi \lor \psi)^{\mathrm{Ku}} := \phi^{\mathrm{Ku}} \lor \psi^{\mathrm{Ku}} \qquad (\phi \land \psi)^{\mathrm{Ku}} := \phi^{\mathrm{Ku}} \land \psi^{\mathrm{Ku}}$$
$$(\exists x.\phi)^{\mathrm{Ku}} := \exists x.\phi^{\mathrm{Ku}} \qquad (\forall x.\phi)^{\mathrm{Ku}} := \forall x. \neg \neg \phi^{\mathrm{Ku}}$$

Theorem. $\mathrm{CL} \vdash \phi \iff \mathrm{ML} \vdash \phi^{\mathrm{Ko}} \iff \mathrm{ML} \vdash \neg \neg \phi^{\mathrm{Ku}}$

¹⁵Paulo Oliva and Gilda Ferreira. On the relation between various negative translations. In *Logic, Construction, Computation*, vol. 3 of Mathematical Logic Series, pp. 227–258, 2012.

A Kuroda-style Translation of System T

We need the general notion of nucleus (J,η,κ) where

- ▶ J is an endofunction on types of T
- $\blacktriangleright \eta: \tau \to J\tau$
- $\blacktriangleright \ \kappa : (\sigma \to J\tau) \to J\sigma \to J\tau$

Each type ρ of T is translated to a type $J[\rho]$ where $[\rho]$ is defined by

$$[\mathsf{Nat}] := \mathsf{Nat} \qquad [\sigma \to \tau] := [\sigma] \to \mathsf{J}[\tau].$$

And each term t:
ho is translated to a term $[t]:\mathrm{J}[
ho]$ as follows

$$\begin{split} & [x] := \eta(\bar{x}) & [0] := \eta(0) \\ & [\lambda x.t] := \eta(\lambda \bar{x}.[t]) & [\operatorname{succ}] := \eta(\eta \circ \operatorname{succ}) \\ & [fa] := [f] \bullet [a] & [\operatorname{rec}] := \eta(\lambda a.\eta(\lambda f.\eta(\operatorname{rec}(\eta a, \lambda nx.fn \bullet x)))) \\ & \text{where } f \bullet a : J\tau \text{ for } f : J(\sigma \to J\tau) \text{ and } a : J\sigma \text{ is defined by} \\ & f \bullet a := \kappa(\lambda g^{\sigma \to J\tau}.\kappa(g, a), f). \end{split}$$

Continuity via The Kuroda-style Translation

We can use our continuity nucleus, but here we recover the stateful approach of Coquand and Jaber¹⁶ and Powell¹⁷ and Cohen and Rahli¹⁸, with no extension to System T.

State monad: $\rho \mapsto (S \to \rho \times S)$

Continuity state nucleus: (J, η, κ) defined by

$$\begin{split} \mathbf{J}(\rho) &:= \mathsf{Nat} \to (\mathsf{Nat} \to \mathsf{Nat}) \to \rho \times \mathsf{Nat} \\ \eta(x^{\rho}) &:= \lambda m \alpha. \langle x \, ; m \rangle \\ \kappa(g^{\sigma \to \mathbf{J}\tau}, w^{\mathbf{J}\sigma}) &:= \lambda m \alpha. \langle (g(wm\alpha)_1 m \alpha)_1 \, ; \max((g(wm\alpha)_1 m \alpha)_2, (wm\alpha)_2, m) \rangle \end{split}$$

¹⁶Thierry Coquand and Guilhem Jaber. A computational interpretation of forcing in type theory. In *Epistemology versus Ontology*, vol. 27, pp. 203–213. Springer Netherlands, 2012.

¹⁷Thomas Powell. A functional interpretation with state. LICS'18.

¹⁸Liron Cohen and Vincent Rahli. Realizing Continuity Using Stateful Computations. 2022

Continuity via The Kuroda-Style Translation (cont.)

Continuity state nucleus: (J, η, κ) defined by

$$\begin{split} \mathbf{J}(\rho) &:= \mathsf{Nat} \to (\mathsf{Nat} \to \mathsf{Nat}) \to \rho \times \mathsf{Nat} \\ \eta(x^{\rho}) &:= \lambda m \alpha. \langle x\, ; m \rangle \\ \kappa(g^{\sigma \to \mathbf{J}\tau}, w^{\mathbf{J}\sigma}) &:= \lambda m \alpha. \langle (g(wm\alpha)_1 m \alpha)_1\, ; \max((g(wm\alpha)_1 m \alpha)_2, (wm\alpha)_2, m) \rangle \end{split}$$

Generic sequence $\Omega: J(\mathsf{Nat} \to J\mathsf{Nat})$ defined by

 $\Omega := \eta(\lambda n^{\mathsf{Nat}} m^{\mathsf{Nat}} \alpha^{\mathsf{Nat} \to \mathsf{Nat}} . \langle \alpha n ; \max(n+1, m) \rangle)$

Theorem. For any closed T term $f : (Nat \to Nat) \to Nat$, the map $\llbracket \operatorname{pr}_2 \circ (([f] \bullet \Omega)0) \rrbracket : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ is a modulus of continuity of $\llbracket f \rrbracket$.

Gentzen-Style vs Kuroda-Style

The Gentzen-style translation is call-ba-name.

The Kuroda-style translation is call-ba-value.

Example: Consider $\lambda \alpha$.rec $(\alpha_{10}, \lambda xy.0, 1)$.

- Using the Gentzen-style translation, the modulus is $\lambda \alpha .0$.
- Using the Kuroda-style translation, the modulus is $\lambda \alpha.11$.

Overview Gi	ödel's System T	Via Exception Handling	Via Denotational Semantics	Via Syntactic Translation	Summary
0000000 0	0000	00	0000000	000000000000000000000000000000000000000	•

Summary

We have looked at some approaches to computing moduli of continuity:

- Effectful directly reflect the idea of the algorithm
- Semantic intuitive thanks to the selected structure
- Syntactic easily generalized for other purposes

Thank you!