fortiss

A Generic Type System
for Featherweight Java

N

Chuangjie Xu (j.w.w. Ulirch Schépp)

FTfJP’21, 13 July 2021, Online

Chuangjie Xu

GuideForcel

GuideForce develops effect type systems for enforcing secure programming guidelines.

» Imagine that functions of interests emit events when they are executed.
= E.g., Server.login() emits a login event; Connection.close() emits a close event; ...
= Each execution of a program generates a (finite or infinite) trace of events.

= Guidelines (of safety and liveness properties) specify which event traces are allowed.
» The type system has effect annotations to give information about the possible traces.

= E.g,login() ? readData() : close(); : type & {loginread, login close}

» Inferring the type of a program is to compute its effect.

» If the effect is “contained” in the guideline, then the program adheres to the guideline.

! GuideForce (DFG 250888164) was Initiated by Martin Hofmann at LMU, and is now hosted at fortiss.

2 Chuangjie Xu

Region Typing

Yy » x — null <:’;\j>

» If a method was analyzed without considering object information,
then its effect should include the traces of all objects.

E.g.,y.last() and z.last() would have the same effect.

» Then the terminating method 1linear() would have the same
effect of the nonterminating method cyclic().

» To improve the precision of effect typing, we use regions to
narrow down referenced objects.

Objects in different regions are analyzed separately.

Chuangjie Xu

coNOoOuUVT A~ WDN PR

class Node {
Node next;
Node last() {
emit(a);
if (next == null) {
return this;
} else {
return next.last();

}
}
}

Class Test {

Node linear() {
Node x = new Node();
Node y = new Node();
y.next = Xx;
return y.last();

}

Node cyclic() {
Node z = new Node();
zZ.next = z;
return z.last();

}
}

Region Type Systems for Featherweight Java

» A pure region type system

[BGH13] L. Beringer, R. Grabowski, and M. Hofmann. Verifying Pointer and String Analyses with Region Type
Systems. Computer Languages, Systems & Structures 39(2), 49-65, 2013.

» A region-based effect type system (for analyzing terminating behaviors)

[EHZ17] S. Erbatur, M. Hofmann, and E. Zalinescu. Enforcing Programming Guidelines with Region Types and
Effects. APLAS 2017.

» Biichi effects (abstract interpretation based on Biichi automata)
[HC14] M. Hofmann and W. Chen. Abstract Interpretation from Biichi Automata. CSL-LICS 2014.

» Another region-based effect type system (nonterminating and exceptional behaviors)

[ESX21] S. Erbatur, U. Schopp, and C. Xu. Type-based Enforcement of Infinitary Trace Properties for Java.
To appear at PPDP 2021.

+* Understand the essential structure

Goal: unify the above systems ¢ Relate and compare to other frameworks

¢ Avoid redundant work on the meta theory

Chuangjie Xu

Featherweight Java (FJ)

» Four kinds of names

variables: x,y € Var classes: C,D € Cls fields: f € FlId methods: m € Mtd

» Special formal elements
this € Var Object, NullType € Cls

» FJ expressions
Exprde =x | letx =ejine, | ifx = ythene; elsee, | null | new* C | (C) e
| x“.f | x“f =y | x“.m(@)

» An FJ program (<, fields, methods, mtable) consists of
= a subtyping relation < € Pin(Cls xCls)
= afield list fields : Cls —» P (Fld)
= a method list methods : Cls — P (Mtd)
= a method table mtable : Cls X Mtd — Var™ X Expr

Chuangjie Xu

Example of an FJ program

» Java code » FJ program
1 class Node { fields(Node) = {next}
2 Node next; methods(Node) = {last}
3 Node last() {
a emit(a); mtable(Node, last) = (() ,elast)
5 if (next == null) { _ _
6 return this; elast = let_ = emit(a) in
7 } else { let x = this. next in
2 } return next.last(); lety = null in
10 } if x = y then this
11} else let z = this. next in z. last()

Chuangjie Xu

A Parametric Operational Semantics

» State model

locations: [€ Loc stores: s € Var — Val
values: v € Val = Loc W {null} heaps: h € Loc — Obj
objects: (C,G,¥) € 0Obj = ClIs x (Fld — Val) X Pos

Write V to denote the set of pairs (v, h) of values and heaps.

» Parameter: a set M together with functions

returny, : V - M bindy; : M XM - M =y : M >V
such that
|returnyg (v, h) |5 = (v, h) and |bind yy (M4, my)|5r = Myl or [Mmy|5r

» Big-step relation (s,h) el m

Intuition: In state (s, h) the expression e evaluates to the value v with the heap updated to h’,
where (v, h") = |m|y,.

Chuangjie Xu

Operational Semantics Rules

(s,h) F x || returnz(s(x), h) (s, h) F null || return pq(null, h)
(s;sh)rer Imi (v, h1) = |milp (s[x > v1], h1) F ez | ma
(s,h) - let x = €1 in ez || bind pq(m1,m2)

s(x)=s(y) (s,h)re;Im s(x) #s(y) (s,h)rexlm
(s,h) F if x =y thenej elseey | m (s,h) Fif x =y thene; elseey | m

I ¢ dom(h) G =[f — nulllfcfieasc)
(s,h) F new! C U return p((I, B[l — (C, G, 0)])
(s,h)relm (v,h")=|m|p; classOfy(v) < C
(s,h)F(C)ellm
sxx)=101 h()=(_G,) s(x)=1 h()=(D,G,€) k" =h[l— (D,G[f — s(y)],)]
(s,h) F x.f | return p((G(f), h) (s,h) F x.f :==y | return p((s(y), h”)
sx)=1 h()=(D,_.) mtable(D,m)=(ze) ([this > IU[zi > s@licqr,... [z h) Felm

(s,h) F x.m(g) | m

Instances of the Operational Semantics

» Standard FJ operational semantics

Simply take M’ = V, and return,; and |—|;, the identity, and bind;; the second projection.
(s,h)rer v, ht (s[x—>ov1],h1) Fex | v, h2

(s,h)Flet x =e1 inez | v, hy

E.g.

» Operational semantics with trace effects
Apply the writer monad X » X X X%, i.e.,take M =V X X" and

returny, (v, h) = ((v, h), e)
bind ¢ ((_;W1); ((Uz:hz);Wz)) = ((Uz»hz);W1W2)
(@0,)], = @B
(s,h) Fer Jvi,hy &wr (s[x > v1],hy) Fex | v2,ha & w2

(s,h)Flet x=e1 inez || v, hy & wiws

» Operational semantics for FJ extended with e.g. exceptions

9 Chuangjie Xu

Region Types

» A region represents a property of a value such as its provenance information.

Reg>dr,s ::= Null | CreatedAt(¥) | T| L | rVs | rAs

» A formal interpretation of regions as a relation (v,h) + r

h(l) = (C, G,) (v, h) Fr (0, h) F s

(v,h)rr (uv,h)Fs

(null,h) r Null (I,h) + CreatedAt (¢) (v,h)+ T (v,h)rrVvs (v,h)FrVs

» The interpretation gives a partial order < on regions

r<s iff (v,h) b r implies (v,h) +s forall (v,h) € V.

» Regions form a lattice (Reg, <, Vv, A)

Chuangjie Xu

(v,h)FrAs

A Generic Type System for FJ

» Parameter: ajoin-semilattice (£, ®,E,U) together with function
return, : Reg — £ bind; : LX (Reg - L) » L |—|; : £ = P(Reg)
Idea: L may carry information of e.g. regions, effects or probabilities with various representations.

The essential structure of a region type system for FJ is given by a monad on the region lattice.

» Typing judgments have the form xq:7ry,...,x:1,, Fe: T where 1 € Reg and T € L.

» A class table (F, M) consists of
= a field typing F : Cls X Reg X Fld — Reg, and
* a method typing M : Cls X Reg X Mtd X Reg* = L

satisfying some well-formedness conditions that reflect the subtyping properties of FJ.

» An FJ program is well-typed w.r.t. (F, M) if each method body has the type as specified in M,
i.e. this:r,x:S+ e : T holdsforany (C,r,m,5) with M(C,r,m,5) =T and mtable(C,m) = (i, e).

Chuangjie Xu

Typing Rules

(x:L)eT F're:T TCT
BOT SUB
F'rte:0 Fre:T’
VAR NULL
[, x:r b x : return p(r) I' F null : return £(Null)
F're: Ty I,x:r+tez: f(r) forallr € |T1|
LET
I'Fletx=e1 iney: bindL(Tl,f)
[, x:rAs, y:rAs ke : Th [,x:r,y:skex: 1o
IF
[,x:r,y:skif x =y thenejelseey: T1 U Ty
I're:T
NEW 7 CAST
I' F new” C : return g(CreatedAt (£)) F'r(D)e: T
s =F(C,r,f) s <F(C,r,f)
GET c SET .
[, x:r kx~.f : return z(s) L, x:r,y:sFx~.f :=y:return p(s)

T =M(C,r,m,5)

CALL .
L,x:r,g:5Fkx-.m(g): T

Chuangjie Xu

A Uniform Soundness Theorem

» Lift (v,h) + r to typing environments I' and field typing F: (s,h) -+ T, F
It says that the state (for evaluating the program) satisfies the properties specified by the typing.

» Last parameter < € M X L to relate the parameters M and £

Soundness Theorem. Suppose < € M X L preserves the structures on M and L in the following sense:
(K1)m<T and TET' implies m<T’,
(92) (v, h) + r implies return, (v, h) < return,(r), and
(@3)if m< T andif m' < f(r) forall r € |T|, with |m|, + 7, then bind, (m, m") < bind (T, f).
Given an FJ program that is well-type w.r.t. (F, M), forany s, h, e, m, I' and T such that
(s,sh)Fedm and T'r+e:T and (s,h)+T,F

we have m < T and (s,h’) - T,F where (_,h") = |m|y,.

Chuangjie Xu

Instantiating the Type System

» To build a concrete type system,

provide a join-semilattice (£, ®, E,l) with maps return,, bind, and |—|;.

» To establish its soundness result,
= instantiate the operational semantics, i.e., choosing a set M’ with maps return;;, bind;; and |—|y,

= specify the relation < € M X L and verify the conditions (<1), (<2) and (<3).

Instance: a pure region type system [BGH13]
» Take (£,0,5,1) = (Reg, L, <,V) with I'ke:n [, xirikex:r

return,(r) =r bind (7, f) = f(r) Ir|, = {r} 'tletx=e;iney:r

E.g. letx = if cond then (new{)1 C) else (new*)2 D) inx : CreatedAt(#,) V CreatedAt(¢,)

» Work with the standard FJ operational semantics (M = V), and take (v,h) <r tobe (v,h) k1.

Chuangjie Xu

Instance: a Region-based Effect Type System [EHZ17]

» Take L = Reg X P(X*) with the lattice structure defined componentwise

e : (r,U) expresses that the result value of e is in region r and the generated event trace is in U.

» The monad functions are define by
return p(r) = (r, {¢})
bind »((r,U), f) = (s,UV) where (s,V) = f(r)
((r,w)l g = {r}
The let-rule can be equivalently formulated as
I'+eq:(r,Ur) [, x:r1 F ez :(ry, Up)

IF'rletx=e1iney: (ry, UiUs)
E.g. letx = if cond then (emit(a) : new?’1 C) else (new1")2 D) in emit(b); x
has type (CreatedAt(#,) V CreatedAt(¥,),{ab, b}).

» Work with the operational semantics with traces (M =7V X ¥¥),
and define ((v, h),w) < (r,U) © ((v, h) + r) A (w € U).

Chuangjie Xu

Instance: another Region-based Effect Type System [ESX21]

» Take L to be the set of finite partial functions from Reg to P(X").

e:r &U; || 1 & U, expresses that the result of e is in region 7; and the trace is in U; for some i.

» We need to define the lattice structure and the monad functions (omitted).

The let-rule can be equivalently formulated as

F'rer:rn&U |- | rpn&Uy I,x:rirey:T; for1<i<n

I'rletx=e;iney: |_|?=1Ui - T;
E.g. letx = if cond then (emit(a) : new?’1 C) else (new1")2 D) in emit(b); x
has type CreatedAt(#;) & {ab} | CreatedAt(¥,) & {b}.

» Still work with the operational semantics with traces (M =7V X ¥¥),
but define ((v,h),w) < (1 & Uy || 1, & Up) & 3. ((v, h) rl-) A (w € U;).

» Compared to [EHZ17], the above system is more precise.
But the cost is a less efficient type inference algorithm.

Chuangjie Xu

Prototype Implementation

Java
Bytecode

Guideline

Soot Framework

Finitary
Analysis

Intraprocedural
Dataflow Analysis

Infinitary
Analysis

Solver
of Equation System

Analysis Result
(e.g., Y/N, effects,
counterexamples)

4

A prototype implementation of type inference of [ESX21] based on the Soot framework:
= Effects are represented by the finitary abstraction based on the guideline automaton [HC14].

= The guideline also specifies the default effects of intrinsic functions.

= For libraries, we assume default effects or provide mockup code.

Chuangjie Xu

Summary

» We introduce a generic type system for FJ and prove a uniform soundness theorem.
» It unifies the systems investigated in the GuideForce project.

» The uniform framework is helpful when extending FJ to cover other language features:
Once (<1)—(<3) are verified, the soundness theorem is valid for the core FJ calculus.
We only need to prove the cases for the additional rules.

Thank you!

Chuangjie Xu

Comparing the Instances [EHZ17] and [ESX21]

Example: Suppose there are classes D < C with two methods f and g.

Consider the class table:

class C@CreatedAt (£1) class D@CreatedAt (£2)
f() :Null & {a} f(0 :Null & {b}
g() : Null & {aa} g() : Null & {bb}

» Let e be the FJ expression if cond then (new{)1 C) else (new{)2 D)
= |In [EHZ17], e has type CreatedAt(#,) V CreatedAt(¥,) & {¢&}
= |In [ESX21], e has type CreatedAt(#;) & {€} | CreatedAt(¥,) & {&}

» Consider expressions letx =einx.f();x.f() and letx =einx.g()
» |n [EHZ17], the former has type null & {aa, ab, ba, bb} and the latter has null & {aa, bb}
= |n [ESX21], both have type null & {aa, bb}.

» The method g may have body this. f(); this. f(). Inlining loses precision in [EHZ17].

» [ESX21] is more precise, but the cost is a less efficient type inference algorithm.

19 Chuangjie Xu

Extension: Exception Handling

» Extend the syntax of FJ with expressions throw e and try e; catch(C x) e,

» For the operational semantics, work with e.g. M = {N,E} x V
* (s,h) +e UN,v,h' meansthat e normalizes to v with the heap updated to h’.
* (s,h) +e U E, v,h" meansthat e throws an exception whose value is v and the heap is updated to h'.
» The monad functions are given by
return p((v, h) = (N, (v, h))
bind 4(((N, _), (x, (v, h))) = (x, (v, h))
bind »(((E, (v, h)), _) = (E, (v, h))
(& (0, b)) m = (v, h).
» Think about all the possible cases of
(s,h)rermi (v,h) =|milp (Slx > vi],h1) Fex | mo
(s,h) - let x = e; in ez || bind p((m1, m2)

(sshyrel ,ouh
(s,h) F throwe | E,v, h’

» Additional operational semantics rules for the new expressions such as

Chuangjie Xu

Extension: Exception Handling (cont.)

» Extend the pure region type system [BGH13] by taking L = Reg X Reg

e : (r,s) says that e evaluates to a value in region r, or throws an exception whose value is in region s.

» The monad functions are define by
return p(r) = (r, 1)

bind £ ((7,s), f) = (t,s Vu) where (t,u) = f(r)
((r,8)| g = {r}

I'Fep: (r1,31) I, x:ri Fep: (r2,82)
The let-rule can be equivalently formulated as LT

I'letx =e1 iney:(ry,s1V s2)

IF're:(r,s)

» Additional typing rules for the new expressions such as THROW
I'+throwe:(L,rVs)

» Lastly, define < by (N, (v, h)) a(r,s) © (v,h) vr and (E, (v, h)) a(r,s) © (vh) +s

» Once (<1)—(<3) are verified, the soundness theorem is valid for the core FJ calculus, we only need to
prove the cases for the additional rules.

Chuangjie Xu

