

A Generic Type System
for Featherweight Java

Chuangjie Xu1

Chuangjie Xu (j.w.w. Ulirch Schöpp)

FTfJP’21, 13 July 2021, Online

GuideForce1

Chuangjie Xu2

GuideForce develops effect type systems for enforcing secure programming guidelines.

Ø Imagine that funcMons of interests emit events when they are executed.

§ E.g., Server.login() emits a login event; Connection.close() emits a close event; …

§ Each execuMon of a program generates a (finite or infinite) trace of events.

§ Guidelines (of safety and liveness properMes) specify which event traces are allowed.

Ø The type system has effect annotations to give information about the possible traces.

§ E.g., login() ? readData() : close(); : type & {login read, login close}

Ø Inferring the type of a program is to compute its effect.

Ø If the effect is “contained” in the guideline, then the program adheres to the guideline.

1 GuideForce (DFG 250888164) was Initiated by Martin Hofmann at LMU, and is now hosted at fortiss.

Region Typing

Chuangjie Xu3

1 class Node {
2 Node next;
3 Node last() {
4 emit(a);
5 if (next == null) {
6 return this;
7 } else {
8 return next.last();
9 }
10 }
11 }
12
13 Class Test {
14 Node linear() {
15 Node x = new Node();
16 Node y = new Node();
17 y.next = x;
18 return y.last();
19 }
20 Node cyclic() {
21 Node z = new Node();
22 z.next = z;
23 return z.last();
24 }
25 }

y x znull

� If a method was analyzed without considering object information,
then its effect should include the traces of all objects.

E.g., y.last() and z.last() would have the same effect.

� Then the terminaMng method linear() would have the same
effect of the nonterminaMng method cyclic().

� To improve the precision of effect typing, we use regions to
narrow down referenced objects.

Objects in different regions are analyzed separately.

Region Type Systems for Featherweight Java
�A pure region type system

[BGH13] L. Beringer, R. Grabowski, and M. Hofmann. Verifying Pointer and String Analyses with Region Type
Systems. Computer Languages, Systems & Structures 39(2), 49–65, 2013.

Chuangjie Xu4

�A region-based effect type system (for analyzing termina@ng behaviors)
[EHZ17] S. Erbatur, M. Hofmann, and E. Zălinescu. Enforcing Programming Guidelines with Region Types and

Effects. APLAS 2017.

�Büchi effects (abstract interpretation based on Büchi automata)
[HC14] M. Hofmann and W. Chen. Abstract Interpretation from Büchi Automata. CSL-LICS 2014.

�Another region-based effect type system (nontermina@ng and excep@onal behaviors)
[ESX21] S. Erbatur, U. Schöpp, and C. Xu. Type-based Enforcement of Infinitary Trace Proper@es for Java.

To appear at PPDP 2021.

Goal: unify the above systems

vUnderstand the essential structure

v Relate and compare to other frameworks

vAvoid redundant work on the meta theory

Featherweight Java (FJ)
� Four kinds of names

variables: 𝑥, 𝑦 ∈ Var classes: 𝐶, 𝐷 ∈ Cls fields: 𝑓 ∈ Fld methods: 𝑚 ∈ Mtd

Chuangjie Xu5

� Special formal elements

this ∈ Var Object, NullType ∈ Cls

� FJ expressions

Expr ∋ 𝑒 ∷= 𝑥 | let 𝑥 = 𝑒F in 𝑒H | if 𝑥 = 𝑦 then 𝑒F else 𝑒H | null | newℓ 𝐶 | 𝐶 𝑒
| 𝑥L. 𝑓 | 𝑥L. 𝑓 ≔ 𝑦 | 𝑥L.𝑚 O𝑦

�An FJ program ≺, Qields,methods,mtable consists of

§ a subtyping relation ≺ ∈ 𝒫QUV Cls ×Cls
§ a field list Qields ∶ Cls → 𝒫QUV Fld
§ a method list methods ∶ Cls → 𝒫QUV Mtd
§ a method table mtable ∶ Cls × Mtd ⇀ Var∗ × Expr

Example of an FJ program
� Java code

Chuangjie Xu6

1 class Node {
2 Node next;
3 Node last() {
4 emit(a);
5 if (next == null) {
6 return this;
7 } else {
8 return next.last();
9 }
10 }
11 }

� FJ program

Qields Node = next
methods Node = last

mtable Node, last = , 𝑒\]^_

𝑒\]^_ ≔ let _ = emit 𝑎 in
let 𝑥 = this. next in
let 𝑦 = null in
if 𝑥 = 𝑦 then this
else let 𝑧 = this. next in 𝑧. last()

A Parametric OperaMonal SemanMcs
� State model

locations: 𝑙 ∈ Loc stores: 𝑠 ∈ Var ⇀ Val
values: 𝑣 ∈ Val = Loc ⊎ null heaps: ℎ ∈ Loc ⇀ Obj
objects: 𝐶, 𝐺, ℓ ∈ Obj = Cls × Fld ⇀ Val × Pos

Write 𝒱 to denote the set of pairs 𝑣, ℎ of values and heaps.

Chuangjie Xu7

� Parameter: a set ℳ together with functions

returnℳ ∶ 𝒱 → ℳ bindℳ ∶ ℳ ×ℳ →ℳ − ℳ ∶ ℳ → 𝒱

such that

returnℳ 𝑣, ℎ ℳ = (𝑣, ℎ) and bindℳ 𝑚F,𝑚H ℳ = 𝑚F ℳ or 𝑚H ℳ

�Big-step relation 𝑠, ℎ ⊢ 𝑒 ⇓ 𝑚

Intuition: In state 𝑠, ℎ the expression 𝑒 evaluates to the value 𝑣 with the heap updated to ℎr,
where 𝑣, ℎr = 𝑚 ℳ.

OperaMonal SemanMcs Rules

Chuangjie Xu8

Instances of the Operational Semantics
� Standard FJ operational semantics

Simply take ℳ = 𝒱, and returnℳ and − ℳ the identity, and bindℳ the second projection.

Chuangjie Xu9

�Operational semantics with trace effects

Apply the writer monad 𝑋 ↦ 𝑋 × Σ∗, i.e., take ℳ = 𝒱 × Σ∗ and

returnℳ 𝑣, ℎ = 𝑣, ℎ , 𝜀

bindℳ _ , 𝑤F , 𝑣H, ℎH , 𝑤H = 𝑣H, ℎH , 𝑤F𝑤H
𝑣, ℎ , _ ℳ = 𝑣, ℎ

�Opera@onal seman@cs for FJ extended with e.g. excep@ons

E.g.

E.g.

Region Types
�A region represents a property of a value such as its provenance information.

Reg ∋ 𝑟, 𝑠 ∷= Null | CreatedAt ℓ | ⊤ | ⊥ | 𝑟 ∨ 𝑠 | 𝑟 ∧ 𝑠

Chuangjie Xu10

�A formal interpretation of regions as a relation 𝑣, ℎ ⊢ 𝑟

� The interpretaMon gives a par@al order ≤ on regions

𝑟 ≤ 𝑠 iff 𝑣, ℎ ⊢ 𝑟 implies 𝑣, ℎ ⊢ 𝑠 for all 𝑣, ℎ ∈ 𝒱.

� Regions form a lattice Reg , ≤ , ∨ , ∧

A Generic Type System for FJ
� Parameter: a join-semilattice ℒ, ∅, ⊑,⊔ together with function

returnℒ ∶ Reg → ℒ bindℒ ∶ ℒ × Reg → ℒ → ℒ − ℒ ∶ ℒ → 𝒫 Reg
Idea: ℒ may carry information of e.g. regions, effects or probabilities with various representations.

The essential structure of a region type system for FJ is given by a monad on the region lattice.

Chuangjie Xu11

�A class table 𝐹,𝑀 consists of

§ a field typing 𝐹 ∶ Cls × Reg × Fld ⇀ Reg, and

§ a method typing 𝑀 ∶ Cls × Reg × Mtd × Reg∗ ⇀ ℒ

satisfying some well-formedness conditions that reflect the subtyping properties of FJ.

� Typing judgments have the form 𝑥F: 𝑟F, … , 𝑥�: 𝑟� ⊢ 𝑒 ∶ 𝑇 where 𝑟F ∈ Reg and 𝑇 ∈ ℒ.

�An FJ program is well-typed w.r.t. 𝐹,𝑀 if each method body has the type as specified in 𝑀,

i.e. this: 𝑟, �̅�: �̅� ⊢ 𝑒 ∶ 𝑇 holds for any 𝐶, 𝑟,𝑚, �̅� with 𝑀 𝐶, 𝑟,𝑚, �̅� = 𝑇 and mtable 𝐶,𝑚 = �̅�, 𝑒 .

Typing Rules

Chuangjie Xu12

A Uniform Soundness Theorem
� Lim 𝑣, ℎ ⊢ 𝑟 to typing environments Γ and field typing 𝐹: 𝑠, ℎ ⊢ Γ, 𝐹

It says that the state (for evaluaMng the program) saMsfies the properMes specified by the typing.

Chuangjie Xu13

� Last parameter ⊲ ⊆ ℳ × ℒ to relate the parameters ℳ and ℒ

Soundness Theorem. Suppose ⊲ ⊆ ℳ × ℒ preserves the structures on ℳ and ℒ in the following sense:
(⊲1) 𝑚 ⊲ 𝑇 and 𝑇 ⊑ 𝑇r implies 𝑚 ⊲ 𝑇r,
(⊲2) 𝑣, ℎ ⊢ 𝑟 implies returnℳ 𝑣, ℎ ⊲ returnℒ 𝑟 , and
(⊲3) if 𝑚 ⊲ 𝑇 and if 𝑚r ⊲ 𝑓 𝑟 for all 𝑟 ∈ 𝑇 ℒ with 𝑚 ℳ ⊢ 𝑟, then bindℳ 𝑚,𝑚r ⊲ bindℒ 𝑇, 𝑓 .

Given an FJ program that is well-type w.r.t. 𝐹,𝑀 , for any 𝑠, ℎ, 𝑒, 𝑚, Γ and 𝑇 such that

𝑠, ℎ ⊢ 𝑒 ⇓ 𝑚 and Γ ⊢ 𝑒 ∶ 𝑇 and 𝑠, ℎ ⊢ Γ, 𝐹

we have 𝑚 ⊲ 𝑇 and 𝑠, ℎr ⊢ Γ, 𝐹 where _ , ℎr = 𝑚 ℳ.

InstanMaMng the Type System
� To build a concrete type system,

provide a join-semilattice ℒ, ∅, ⊑,⊔ with maps returnℒ, bindℒ and − ℒ.

Chuangjie Xu14

� To establish its soundness result,

§ instantiate the operational semantics, i.e., choosing a set ℳ with maps returnℳ, bindℳ and − ℳ

§ specify the relation ⊲ ⊆ ℳ × ℒ and verify the conditions (⊲1), (⊲2) and (⊲3).

Instance: a pure region type system [BGH13]

� Take ℒ, ∅, ⊑,⊔ = Reg, ⊥, ≤,∨ with

returnℒ 𝑟 = 𝑟 bindℒ 𝑟, 𝑓 = 𝑓 𝑟 𝑟 ℒ = 𝑟

�Work with the standard FJ operaMonal semanMcs (ℳ = 𝒱), and take 𝑣, ℎ ⊲ 𝑟 to be 𝑣, ℎ ⊢ 𝑟.

E.g. let 𝑥 = if 𝑐𝑜𝑛𝑑 then newℓ� 𝐶 else newℓ� 𝐷 in 𝑥 ∶ CreatedAt ℓF ∨ CreatedAt ℓH

Instance: a Region-based Effect Type System [EHZ17]
� Take ℒ = Reg × 𝒫 Σ∗ with the lattice structure defined componentwise

𝑒 ∶ 𝑟, 𝑈 expresses that the result value of 𝑒 is in region 𝑟 and the generated event trace is in 𝑈.

Chuangjie Xu15

� The monad functions are define by

The let-rule can be equivalently formulated as

E.g. let 𝑥 = if 𝑐𝑜𝑛𝑑 then emit 𝑎 ; newℓ� 𝐶 else newℓ� 𝐷 in emit 𝑏 ; 𝑥
has type CreatedAt ℓF ∨ CreatedAt ℓH , 𝑎𝑏, 𝑏 .

�Work with the operational semantics with traces (ℳ = 𝒱 × Σ∗),

and define 𝑣, ℎ , 𝑤 ⊲ 𝑟, 𝑈 ⇔ 𝑣, ℎ ⊢ 𝑟 ∧ 𝑤 ∈ 𝑈 .

Instance: another Region-based Effect Type System [ESX21]

Chuangjie Xu16

� Take ℒ to be the set of finite par@al func@ons from Reg to 𝒫 Σ∗ .

𝑒 ∶ 𝑟F & 𝑈F |⋯ | 𝑟� & 𝑈� expresses that the result of 𝑒 is in region 𝑟� and the trace is in 𝑈� for some 𝑖.

� Still work with the operational semantics with traces (ℳ = 𝒱 × Σ∗),

but define 𝑣, ℎ , 𝑤 ⊲ (𝑟F & 𝑈F |⋯ | 𝑟� & 𝑈�) ⇔ ∃ 𝑖. 𝑣, ℎ ⊢ 𝑟� ∧ 𝑤 ∈ 𝑈� .

�We need to define the lattice structure and the monad functions (omitted).

The let-rule can be equivalently formulated as

E.g. let 𝑥 = if 𝑐𝑜𝑛𝑑 then emit 𝑎 ; newℓ� 𝐶 else newℓ� 𝐷 in emit 𝑏 ; 𝑥
has type CreatedAt ℓF & 𝑎𝑏 | CreatedAt ℓH & 𝑏 .

� Compared to [EHZ17], the above system is more precise.
But the cost is a less efficient type inference algorithm.

Prototype ImplementaMon

Chuangjie Xu17

A prototype implementaMon of type inference of [ESX21] based on the Soot framework:

§ Effects are represented by the finitary abstracMon based on the guideline automaton [HC14].

§ The guideline also specifies the default effects of intrinsic funcMons.

§ For libraries, we assume default effects or provide mockup code.

Guideline

Java
Bytecode

Analysis Result
(e.g., Y/N, effects,
counterexamples)

Finitary
Analysis

Infinitary
Analysis

Soot Framework

Intraprocedural
Dataflow Analysis

Solver
of Equation System

Summary

Chuangjie Xu18

�We introduce a generic type system for FJ and prove a uniform soundness theorem.

� It unifies the systems invesMgated in the GuideForce project.

� The uniform framework is helpful when extending FJ to cover other language features:
Once (⊲1)—(⊲3) are verified, the soundness theorem is valid for the core FJ calculus.
We only need to prove the cases for the additional rules.

Thank you!

Comparing the Instances [EHZ17] and [ESX21]
Example: Suppose there are classes 𝐷 ≺ 𝐶 with two methods 𝑓 and 𝑔.

Consider the class table:

Chuangjie Xu19

� Let 𝑒 be the FJ expression if 𝑐𝑜𝑛𝑑 then newℓ� 𝐶 else newℓ� 𝐷
§ In [EHZ17], 𝑒 has type CreatedAt ℓF ∨ CreatedAt ℓH & 𝜀
§ In [ESX21], 𝑒 has type CreatedAt ℓF & 𝜀 | CreatedAt ℓH & 𝜀

� Consider expressions let 𝑥 = 𝑒 in 𝑥. 𝑓(); 𝑥. 𝑓() and let 𝑥 = 𝑒 in 𝑥. 𝑔()
§ In [EHZ17], the former has type null & 𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏 and the laqer has null & 𝑎𝑎, 𝑏𝑏
§ In [ESX21], both have type null & 𝑎𝑎, 𝑏𝑏 .

� The method 𝑔 may have body this. 𝑓(); this. 𝑓(). Inlining loses precision in [EHZ17].

� [ESX21] is more precise, but the cost is a less efficient type inference algorithm.

Extension: Exception Handling
� Extend the syntax of FJ with expressions throw 𝑒 and try 𝑒F catch 𝐶 𝑥 𝑒H

Chuangjie Xu20

� For the operaMonal semanMcs, work with e.g. ℳ = N, E × 𝒱
§ 𝑠, ℎ ⊢ 𝑒 ⇓ N, 𝑣, ℎ′ means that 𝑒 normalizes to 𝑣 with the heap updated to ℎr.
§ 𝑠, ℎ ⊢ 𝑒 ⇓ E, 𝑣, ℎ′ means that 𝑒 throws an excepMon whose value is 𝑣 and the heap is updated to ℎ′.

� The monad functions are given by

�AddiMonal operaMonal semanMcs rules for the new expressions such as

� Think about all the possible cases of

Extension: Exception Handling (cont.)

Chuangjie Xu21

� Extend the pure region type system [BGH13] by taking ℒ = Reg × Reg
𝑒 ∶ 𝑟, 𝑠 says that 𝑒 evaluates to a value in region 𝑟, or throws an exception whose value is in region 𝑠.

� The monad funcMons are define by

The let-rule can be equivalently formulated as

�AddiMonal typing rules for the new expressions such as

� Lastly, define ⊲ by N, 𝑣, ℎ ⊲ 𝑟, 𝑠 ⇔ 𝑣, ℎ ⊢ 𝑟 and E, 𝑣, ℎ ⊲ 𝑟, 𝑠 ⇔ 𝑣, ℎ ⊢ 𝑠

�Once (⊲1)—(⊲3) are verified, the soundness theorem is valid for the core FJ calculus, we only need to
prove the cases for the additional rules.

