From Double-Negation Translation of Proofs to Static Analysis of Code

Chuangjie Xu

Type Theory, Constructive Mathematics and Geometric Logic 1–5 May 2023, CIRM, Marseille, France

This talk is to relate

a technique for studying proofs

to

some tools for finding bugs in software

Gentzen's double-negation translation

Translating formulas in predicate logic as follows

$$\begin{array}{ll} (A \to B)^{\mathrm{G}} :\equiv A^{\mathrm{G}} \to B^{\mathrm{G}} & P^{\mathrm{G}} :\equiv \neg \neg P & \text{for primitive } P \\ (A \wedge B)^{\mathrm{G}} :\equiv A^{\mathrm{G}} \wedge B^{\mathrm{G}} & (A \lor B)^{\mathrm{G}} :\equiv \neg \neg (A^{\mathrm{G}} \lor B^{\mathrm{G}}) \\ (\forall xA)^{\mathrm{G}} :\equiv \forall xA^{\mathrm{G}} & (\exists xA)^{\mathrm{G}} :\equiv \neg \neg \exists xA^{\mathrm{G}} \end{array}$$

One can prove $\operatorname{CL} \vdash A \iff \operatorname{ML} \vdash A^{\operatorname{G}}$.

(The translations of Gentzen and Gödel are different in the sense of [Arthan&Oliva]¹.)

¹ Rob Arthan and Paulo Oliva. **On affine logic and Lukasiewicz logic**. arXiv:1404.0570 [cs.LO], 2014.

Generalizing Gentzen's translation^{2,3,4}

Replace $\neg \neg$ by a **nucleus**, that is, an endofunction *j* on formulas such that

 $\phi \to j\phi \qquad (\phi \to j\psi) \to j\phi \to j\psi \qquad (j\phi)[t/x] \leftrightarrow j(\phi[t/x])$

The translation becomes

$$P_{j}^{G} := jP \qquad (\phi \to \psi)_{j}^{G} := \phi_{j}^{G} \to \psi_{j}^{G}$$
$$(\phi \lor \psi)_{j}^{G} := j(\phi_{j}^{G} \lor \psi_{j}^{G}) \qquad (\phi \land \psi)_{j}^{G} := \phi_{j}^{G} \land \psi_{j}^{G}$$
$$(\exists x.\phi)_{j}^{G} := j(\exists x.\phi_{j}^{G}) \qquad (\forall x.\phi)_{j}^{G} := \forall x.\phi_{j}^{G}$$

 $\mbox{Try e.g.} \quad j\phi = (\phi \to X) \to X \quad \mbox{or} \quad j\phi = \phi \lor \bot$

³ Martín Escardó and Paulo Oliva. The Peirce translation. APAL, 163(6):681–692, 2012.

⁴ Benno van den Berg. A Kuroda-style j-translation. AML, 58(5-6):627–634, 2019.

² Hajime Ishihara. **A Note on the Gödel–Gentzen Translation**. MLQ, 46(1):135–137, 2000.

Applying the Proofs-as-Programs correspondence

j-translation of propositional logic + induction scheme Proofs-as-Programs parametrized syntactic translation of Gödel's System T

Gödel's System T

Very briefly, $T \equiv$ simply typed λ -calculus + Nat + primitive recursor.

It can be given by

Type
$$\sigma, \tau :=$$
Nat $| \sigma \rightarrow \tau | \sigma \times \tau | \sigma + \tau$
Term $t, u := x | \lambda x.t | tu | 0 | succ | rec_{\sigma} | \cdots$

with typing rules such as

 $\begin{array}{c|c} \hline \Gamma \vdash t : \sigma \to \tau & \Gamma \vdash u : \sigma \\ \hline \Gamma \vdash tu : \tau & \hline \Gamma \vdash \operatorname{rec}_{\sigma} : \sigma \to (\operatorname{Nat} \to \sigma \to \sigma) \to \operatorname{Nat} \to \sigma \end{array}$

A Gentzen-style translation of System T⁵

A nucleus for System T is an endofunction J on T types together with T terms

$$\eta_{\sigma}: \sigma \to J\sigma \qquad \kappa_{\sigma,\tau}: (\sigma \to J\tau) \to J\sigma \to J\tau.$$

Given a nucleus (J, η , κ), we translate types $\sigma \mapsto \sigma^{J}$ by

$$\begin{split} \mathsf{Nat}^{\mathrm{J}} &:= \mathsf{JNat} & (\sigma \to \tau)^{\mathrm{J}} := \sigma^{\mathrm{J}} \to \tau^{\mathrm{J}} \\ (\sigma + \tau)^{\mathrm{J}} &:= \mathsf{J}(\sigma^{\mathrm{J}} + \tau^{\mathrm{J}}) & (\sigma \times \tau)^{\mathrm{J}} := \sigma^{\mathrm{J}} \times \tau^{\mathrm{J}} \end{split}$$

and terms $(t : \sigma) \mapsto (t^{\mathrm{J}} : \sigma^{\mathrm{J}})$ by
 $0^{\mathrm{J}} &:= \eta(0) & (\lambda x.t)^{\mathrm{J}} := \lambda x^{\mathrm{J}}.t^{\mathrm{J}} \\ \operatorname{succ}^{\mathrm{J}} &:= \kappa(\eta \circ \operatorname{succ}) & (tu)^{\mathrm{J}} := t^{\mathrm{J}}u^{\mathrm{J}} & \cdots \end{split}$

⁵ Chuangjie Xu. A Gentzen-style monadic translation of Gödel's System T. FSCD 2020.

Fundamental theorem of logical relation

(Omit $\sigma + \tau$ for simplicity: $\eta : Nat \to JNat \quad \kappa : (Nat \to JNat) \to JNat \to JNat)$ Let [-] be the standard/natural interpretation of System T.

Extend a given $R_{Nat} \subseteq \mathbb{N} \times \llbracket JNat \rrbracket$ to a logical relation $R_{\rho} \subseteq \llbracket \rho \rrbracket \times \llbracket \rho^{J} \rrbracket$ by $f \ R_{\sigma \to \tau} \ g := \forall x^{\llbracket \sigma \rrbracket} a^{\llbracket \sigma^{J} \rrbracket} (x \ R_{\sigma} \ a \to fx \ R_{\tau} \ ga)$

Theorem. For any closed term $t: \rho$ in System T, we have $\llbracket t \rrbracket \operatorname{R}_{\rho} \llbracket t^{\operatorname{J}} \rrbracket$ if $\forall n(n \operatorname{R}_{\operatorname{Nat}} \llbracket \eta \rrbracket n)$ and $\forall f^{\mathbb{N} \to \mathbb{N}} g^{\mathbb{N} \to \llbracket J\operatorname{Nat} \rrbracket} (\forall i(fi \operatorname{R}_{\operatorname{Nat}} gi) \to f \operatorname{R}_{\operatorname{Nat} \to \operatorname{Nat}} \llbracket \kappa \rrbracket g)$. Chuangije Xu

Example: continuity of T-definable functions

Theorem. All functions $f : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ definable in System T are **continuous**, i.e.

$$\forall (\alpha : \mathbb{N}^{\mathbb{N}}) . \exists (m : \mathbb{N}) . \forall (\beta : \mathbb{N}^{\mathbb{N}}) . (\alpha =_{m} \beta \to f\alpha = f\beta)$$

Proof. (1) Define a nucleus $JNat = (Nat^{Nat} \rightarrow Nat) \times (Nat^{Nat} \rightarrow Nat)$

$$\begin{split} \eta &:= \lambda n^{\mathsf{Nat}}.\langle \lambda \alpha.n; \lambda \alpha.0 \rangle \\ \kappa &:= \lambda g^{\mathsf{Nat} \to \mathsf{JNat}} w^{\mathsf{JNat}}.\langle \lambda \alpha.(g(w_1 \alpha))_1 \alpha; \lambda \alpha.\max((g(w_1 \alpha))_2 \alpha, w_2 \alpha) \rangle \end{split}$$

(2) Define a relation $R^{\alpha}_{Nat} \subseteq \mathbb{N} \times \llbracket JNat \rrbracket$

 $n \operatorname{R}^{\alpha}_{\operatorname{Nat}}(f, M) := f\alpha = n \wedge \forall (\beta : \mathbb{N}^{\mathbb{N}}).(\alpha =_{M\alpha} \beta \to f\alpha = f\beta)$

(3) Show that $\mathbf{R}_{Nat}^{\alpha}$ preserves η and κ .

Other instances and applications

- Uniform continuity
- Totality
- Number of evaluation steps
- Majorizability⁶
- Closure under bar recursion^{7,8}

⁸ Paulo Oliva and Silvia Steila. **A direct proof of Schwichtenberg's bar recursion closure theorem**. JSL, 83(1):70–83, 2018.

⁶ W. A. Howard. **Hereditarily majorizable functionals of finite type.** In Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, pp. 454–461. Springer, Berlin, 1973.

⁷ Helmut Schwichtenberg. **On bar recursion of types 0 and 1**. JSL, 44(3):325–329, 1979.

A Kuroda-style translation⁹

Given a nucleus (J, η , κ), we translate types $\sigma \mapsto J[\sigma]$ where

$$\begin{bmatrix} \mathsf{Nat} \end{bmatrix} := \mathsf{Nat} \qquad [\sigma \to \tau] := [\sigma] \to \mathsf{J}[\tau]$$
$$[\sigma + \tau] := [\sigma] + [\tau] \qquad [\sigma \times \tau] := [\sigma] \times [\tau]$$

And each term $t: \rho$ is translated to a term $[t]: J[\rho]$.

How they differ — evaluation strategy

- The Gentzen-style translation is call-by-name.
- The Kuroda-style translation is **call-by-value**.

⁹ Thomas Powell. A functional interpretation with state. LICS 2018.

Generalizing the syntactic translation to an interpreter

Parameters for the interpretation:

- A set N to model the base type Nat
- A monad J of sets

Types are recursively interpreted as in the translation:

 $\begin{bmatrix} \mathsf{Nat} \end{bmatrix}^{\mathsf{J}} := \mathsf{JN} \qquad \begin{bmatrix} \sigma \to \tau \end{bmatrix}^{\mathsf{J}} := \llbracket \sigma \rrbracket^{\mathsf{J}} \to \llbracket \tau \rrbracket^{\mathsf{J}} \\ \llbracket \sigma + \tau \rrbracket^{\mathsf{J}} := \mathsf{J}(\llbracket \sigma \rrbracket^{\mathsf{J}} + \llbracket \tau \rrbracket^{\mathsf{J}}) \qquad \llbracket \sigma \times \tau \rrbracket^{\mathsf{J}} := \llbracket \sigma \rrbracket^{\mathsf{J}} \times \llbracket \tau \rrbracket^{\mathsf{J}} \\ \text{And each term } t : \sigma \text{ is interpreted by } \llbracket t \rrbracket^{\mathsf{J}} \in \llbracket \sigma \rrbracket^{\mathsf{J}}.$

Example: Escardó's dialogue trees¹⁰

The **dialogue monad** \mathcal{D} for a given set X is inductively generated by

$$\eta: X \to \mathcal{D}X \qquad \beta: (\mathbb{N} \to \mathcal{D}X) \to \mathbb{N} \to \mathcal{D}X$$

Interpret System T by setting the parameters (**N**, **J**) to $(\mathbb{N}, \mathcal{D})$.

Recover the continuity result of System T definable functionals.

¹⁰ Martín Escardó. **Continuity of Gödel's system T functionals via effectful forcing**. MFPS 2013.

Extending to sophisticated programming languages

To model additional language features,

the parameters should have corresponding structures:

- Base types / value constants value-set parameters (e.g. **S** for strings)
- Primitive operations e.g., concat: $J S \rightarrow J S \rightarrow J S$
- Conditional branching join-semilattice
- Objects and fields state monad
- Exceptions option/either monad

• ...

But the interpretation of the **functional core** is (essentially) the same.

A generic interpreter¹¹ of some typed language with strings

looks like the following

$$\begin{split} & \begin{bmatrix} \lambda x.e \end{bmatrix}(\rho) := \lambda a. \llbracket e \rrbracket(\rho, x \mapsto a) \\ & \llbracket e_1 e_2 \rrbracket(\rho) := \llbracket e_1 \rrbracket(\rho) (\llbracket e_2 \rrbracket(\rho)) \\ & \llbracket e_1 + e_2 \rrbracket(\rho) := \operatorname{concat}(\llbracket e_1 \rrbracket(\rho), \llbracket e_2 \rrbracket(\rho)) \\ & \llbracket if \ e_1 \ \text{then} \ e_2 \ \text{else} \ e_3 \rrbracket(\rho) := \operatorname{join}(\llbracket e_1 \rrbracket(\rho), \llbracket e_2 \rrbracket(\rho)) \end{split}$$

where e.g. concat and join are additional assumptions on the monad J.

Its instantiations can be used to find **bugs** of programs.

...

¹¹ Ulrich Schöpp and Chuangjie Xu. A generic type system for featherweight Java. FTfJP 2021.

What bugs are we interested in?

```
Example: SQL injection
```

```
String name = req.getParameter("name"); // source: user input
...
String query = "SELECT * FROM users WHERE name = '" + name + "'";
stmt.executeQuery(query); // sink: execute a tainted query
```

If the user input is foo'; DROP TABLE users -- then

Vulnerability bugs where tainted data flows from source to sink

Idea of detecting such bugs

Consider the same example:

```
String name = req.getParameter("name"); // name:bad
...
String query = ... + name + "'"; // name:bad, query:bad
stmt.executeQuery(query); // issue "query is bad"
```

- Track the taint information of all variables
- Raise an issue when a sink is applied to possibly tainted inputs

Taint analysis as an instance of the generic interpreter

• To track taint information

interpret program expressions by the taint lattice, i.e.

 $\mathbf{S} = \mathcal{P}(\{\text{good}, \text{bad}\})$

• To raise issues

use the writer monad, i.e.

$$J(X) = X \times \text{String}$$

An abstract interpreter for taint analysis

Assume that the language has a taint source and a sink function, then

$$\llbracket \mathsf{source} \rrbracket(\rho) := \operatorname{return} \operatorname{bad}$$
$$\llbracket str \rrbracket(\rho) := \operatorname{return} \operatorname{good}$$
$$\llbracket \mathsf{sink}(e) \rrbracket(\rho) := \operatorname{do} a \leftarrow \llbracket e \rrbracket(\rho) \\ \text{when } (\operatorname{bad} \in a) \text{ tell "Boomm!"} \\ \operatorname{return} ()$$

E.g., for $(_, s) = \llbracket e \rrbracket \in JS = \mathcal{P}(\{\text{good}, \text{bad}\}) \times \text{String}$

• if *s* is empty, then the program *e* is safe.

Summary

Double-negation translation

parametrize

j-translation of logic

proofs-as-programs J-translation of System T

generalize

Generic interpreter

of System T

extend

Generic interpreter of programming languages

classical logic \hookrightarrow minimal logic

classical logic \rightarrow intuitionistic logic \rightarrow minimal logic

majorizability, continuity, bar recursion closure, ...

continuity via dialogue trees

static code analysis (to find bugs)

