
From Double-Negation Translation of Proofs
to Static Analysis of Code

Type Theory, Constructive Mathematics and Geometric Logic
1–5 May 2023, CIRM, Marseille, France

Chuangjie Xu

SonarSource

Chuangjie Xu

This talk is to relate

a technique for studying proofs

to

some tools for finding bugs in software

Chuangjie Xu

Gentzen’s double-negation translation

Translating formulas in predicate logic as follows

1 Rob Arthan and Paulo Oliva. On affine logic and Lukasiewicz logic. arXiv:1404.0570 [cs.LO], 2014.

One can prove .

(The translations of Gentzen and Gödel are different in the sense of [Arthan&Oliva]1.)

Chuangjie Xu

Generalizing Gentzen’s translation2,3,4

Replace ¬¬ by a nucleus, that is, an endofunction j on formulas such that

The translation becomes

Try e.g. or

2 Hajime Ishihara. A Note on the Gödel–Gentzen Translation. MLQ, 46(1):135–137, 2000.
3 Martín Escardó and Paulo Oliva. The Peirce translation. APAL, 163(6):681–692, 2012.
4 Benno van den Berg. A Kuroda-style j-translation. AML, 58(5-6):627–634, 2019.

Chuangjie Xu

Applying the Proofs-as-Programs correspondence

j-translation
of propositional logic + induction scheme

parametrized syntactic translation
of Gödel’s System T

Proofs-as-Programs

Chuangjie Xu

Gödel’s System T

Very briefly,

It can be given by

with typing rules such as

Chuangjie Xu

and terms by

Given a nucleus (J, 𝜂, 𝜅), we translate types by

A Gentzen-style translation of System T5

A nucleus for System T is an endofunction J on T types together with T terms

5 Chuangjie Xu. A Gentzen-style monadic translation of Gödel's System T. FSCD 2020.

…

Chuangjie Xu

Fundamental theorem of logical relation

(Omit 𝜎 + 𝜏 for simplicity:)

Let be the standard/natural interpretation of System T.

Extend a given to a logical relation by

Theorem. For any closed term in System T, we have

if

Chuangjie Xu

Example: continuity of T-definable functions

Theorem. All functions definable in System T are continuous, i.e.

Proof. (1) Define a nucleus

(2) Define a relation

(3) Show that preserves 𝜂 and 𝜅.

Chuangjie Xu

Other instances and applications

● Uniform continuity

● Totality

● Number of evaluation steps

● Majorizability6

● Closure under bar recursion7,8

6 W. A. Howard. Hereditarily majorizable functionals of finite type. In Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis, pp. 454–461. Springer, Berlin, 1973.

7 Helmut Schwichtenberg. On bar recursion of types 0 and 1. JSL, 44(3):325–329, 1979.
8 Paulo Oliva and Silvia Steila. A direct proof of Schwichtenberg’s bar recursion closure theorem. JSL, 83(1):70–83,

2018.

Chuangjie Xu

A Kuroda-style translation9

Given a nucleus (J, 𝜂, 𝜅), we translate types where

How they differ — evaluation strategy
● The Gentzen-style translation is call-by-name.
● The Kuroda-style translation is call-by-value.

9 Thomas Powell. A functional interpretation with state. LICS 2018.

And each term is translated to a term .

Chuangjie Xu

Generalizing the syntactic translation to an interpreter

Parameters for the interpretation:
● A set N to model the base type Nat
● A monad J of sets

Types are recursively interpreted as in the translation:

And each term is interpreted by .

Chuangjie Xu

Example: Escardó’s dialogue trees10

The dialogue monad for a given set is inductively generated by

10 Martín Escardó. Continuity of Gödel’s system T functionals via effectful forcing. MFPS 2013.

Interpret System T by setting the parameters (N, J) to .

Recover the continuity result of System T definable functionals.

Chuangjie Xu

Extending to sophisticated programming languages

To model additional language features,
the parameters should have corresponding structures:

● Base types / value constants – value-set parameters (e.g. S for strings)
● Primitive operations – e.g., concat: J S → J S → J S
● Conditional branching – join-semilattice
● Objects and fields – state monad
● Exceptions – option/either monad
● …

But the interpretation of the functional core is (essentially) the same.

Chuangjie Xu

A generic interpreter11 of some typed language with strings

looks like the following

where e.g. concat and join are additional assumptions on the monad J.

Its instantiations can be used to find bugs of programs.

11 Ulrich Schöpp and Chuangjie Xu. A generic type system for featherweight Java. FTfJP 2021.

Chuangjie Xu

What bugs are we interested in?

Example: SQL injection

If the user input is then

Vulnerability bugs where tainted data flows from source to sink

Chuangjie Xu

Idea of detecting such bugs

Consider the same example:

● Track the taint information of all variables

● Raise an issue when a sink is applied to possibly tainted inputs

Chuangjie Xu

Taint analysis as an instance of the generic interpreter

● To track taint information

interpret program expressions by the taint lattice, i.e.

● To raise issues

use the writer monad, i.e.

Chuangjie Xu

An abstract interpreter for taint analysis

Assume that the language has a taint source and a sink function, then

E.g., for

● if s is empty, then the program e is safe.

Chuangjie Xu

Summary

Double-negation translation classical logic ↪ minimal logic

j-translation of logic classical logic ↪ intuitionistic logic ↪ minimal logic

J-translation of System T majorizability, continuity, bar recursion closure, …

Generic interpreter continuity via dialogue trees
of System T

Generic interpreter static code analysis (to find bugs)
of programming languages

parametrize

proofs-as-programs

generalize

extend

