A syntactic approach to continuity of Gödel's system T definable functionals

Chuangjie Xu

Ludwig-Maximilians-Universität München

Continuity, Computability, Constructivity (CCC 2018)

24-28 September 2018, Faro

Background	Continuity of T-definable functionals	Other properties/structures	Summary
●00	000000	OO	O
Background			

This talk is

1. to present a syntactic approach to continuity of functions $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ that are definable in Gödel's system T, and

2. to generalize the method to prove other properties/structures of $T\mathchar`-definable functionals.$

Background	Continuity of T-definable functionals	Other properties/structures	Summary
O●O	000000	00	O
Background			

Gödel's system ${\rm T}$

We work with (the term language of) Gödel's system T in its λ -calculus form

```
T \equiv simply typed \lambda-calculus + \mathbb{N} + \text{primitive recursor}.
```

Finite types defined inductively

 $\rho, \sigma, \tau :\equiv \mathbb{N} \mid \sigma \to \tau$

Constants associated to the ground type \mathbb{N} include

- 0 : ℕ,
- $\operatorname{succ} : \mathbb{N} \to \mathbb{N}$, and
- $\operatorname{rec}: \rho \to (\mathbb{N} \to \rho \to \rho) \to \mathbb{N} \to \rho$ with

 $\operatorname{rec}(a)(f)(0) = a \qquad \operatorname{rec}(a)(f)(\operatorname{succ}(n)) = f(n)(\operatorname{rec}(a)(f)(n))$

for every finite type ρ .

Background	Continuity of T-definable functionals	Other properties/structures	Summary
00●	000000	00	O
Background			

Syntactic method

Usual steps:

(1) Define a predicate $P_{\rho} \subseteq \rho$ by induction on the finite type ρ

 $P_{\mathbb{N}}(n) :\equiv \cdots$ $P_{\sigma \to \tau}(h) :\equiv \forall x^{\sigma} (P_{\sigma}(x) \to P_{\tau}(hx))$

(2) Prove that any term $t: \rho$ in T satisfies P_{ρ} by induction on the term t.

Examples: totality¹, majorizability², ...

However, what we want to prove is continuity of functions $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ which is a $\forall \exists \forall$ -statement. It seems impossible to define a $P_{\mathbb{N}}$ such that $P_{(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}}(f)$ expresses the continuity of f.

¹H. Schwichtenberg and S. S. Wainer, *Proofs and Computations*. Cambridge University Press, 2012.

²U. Kohlenbach, Applied Proof Theory: Proof Interpretations and Their Use in Mathematics. Springer-Verlag Berlin Heidelberg, 2008.

Background	Continuity of ⊤-definable functionals	Other properties/structures	Summary
000	●000000	00	O
Continuity of T-definable function	nals		

$\mathsf{Precook}\ \mathrm{T-b\text{-}translation}$

The idea is, as a Step (0), to perform a translation $(t \mapsto t^{\rm b}) : \rho \to \rho^{\rm b}$ from T to itself such that continuity of functions $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ becomes the base case of the predicate $C_{\rho} \subseteq \rho^{\rm b}$ defined in (1). Once we know that the translation $f^{\rm b}$ satisfies the predicate which is a result of (2), then f is continuous.

• For each finite type ρ we associate inductively a new one $\rho^{\rm b}$ as

$$\begin{array}{ccc} \mathbb{N}^{\mathrm{b}} & :\equiv & (\mathbb{N} \to \mathbb{N}) \to \mathbb{N} \\ (\sigma \to \tau)^{\mathrm{b}} & :\equiv & \sigma^{\mathrm{b}} \to \tau^{\mathrm{b}}. \end{array}$$

For any term $t : \rho$ in T, we define $t^{b} : \rho^{b}$ inductively as follows

$$\begin{array}{rcl} (x^{\rho})^{\mathrm{b}} & :\equiv & x^{\mathrm{b}} \\ (\lambda x.u)^{\mathrm{b}} & :\equiv & \lambda x^{\mathrm{b}}.u^{\mathrm{b}} \\ (fa)^{\mathrm{b}} & :\equiv & f^{\mathrm{b}}a^{\mathrm{b}} \\ 0^{\mathrm{b}} & :\equiv & \lambda \alpha.0 \\ \mathrm{succ}^{\mathrm{b}} & :\equiv & \lambda f.(\mathrm{succ} \circ f) \\ \mathrm{rec}^{\mathrm{b}} & :\equiv & ??? \end{array}$$

Background	Continuity of ⊤-definable functionals	Other properties/structures	Summary
000	O●0000	OO	O
Continuity of T-definable functio	nals		

${\sf Precook}\ {\rm T-Kleisli}\ {\sf extension}$

To have a sound translation, $\operatorname{rec}^{\mathrm{b}}: \rho^{\mathrm{b}} \to (\mathbb{N}^{\mathrm{b}} \to \rho^{\mathrm{b}} \to \rho^{\mathrm{b}}) \to \mathbb{N}^{\mathrm{b}} \to \rho^{\mathrm{b}}$ has to preserve the computational rules of rec, *i.e.* rec^b should satisfy

 $\operatorname{rec}^{\mathrm{b}}(a)(f)(0^{\mathrm{b}}) = a \qquad \operatorname{rec}^{\mathrm{b}}(a)(f)(\operatorname{succ}\,n)^{\mathrm{b}} = f(n^{\mathrm{b}})(\operatorname{rec}^{\mathrm{b}}(a)(f)(n^{\mathrm{b}}))$

A candidate for $\operatorname{rec}^{\mathrm{b}}(a)(f): \mathbb{N}^{\mathrm{b}} \to \rho^{\mathrm{b}}$ is $\operatorname{rec}(a)(\lambda k.f(k^{\mathrm{b}})): \mathbb{N} \to \rho^{\mathrm{b}}$.

It is possible to extend $g: \mathbb{N} \to \rho^{\mathrm{b}}$ to $g^*: \mathbb{N}^{\mathrm{b}} \to \rho^{\mathrm{b}}$ such that $\forall i. \ g^*(i^{\mathrm{b}}) = g(i)$ by induction on ρ – Kleisli extension

$$ke^{\mathbb{N}}(g)(f) :\equiv \lambda \alpha.g(f\alpha)(\alpha) ke^{\sigma \to \tau}(g)(f) :\equiv \lambda x.ke^{\tau}(\lambda k.g(k)(x))(f)$$

Hence, we define

$$\operatorname{rec}^{\mathrm{b}} :\equiv \lambda a f. \operatorname{ke}(\operatorname{rec}(a)(\lambda k.f(\lambda \alpha.k))).$$

Background 000	Continuity of T-definable functionals	Other properties/structures	Summary O
Continuity of T-definable functio	nals		

Precook T – relating terms to their $b\mbox{-translations}$

We define the following parameterized logical relation³ $R^{\rho}_{\alpha} \subseteq \rho^{b} \times \rho$ for a given $\alpha : \mathbb{N} \to \mathbb{N}$ by induction on ρ

$$\begin{array}{rcl} f \ \mathrm{R}^{\mathbb{N}}_{\alpha} \ n & :\equiv & f(\alpha) = n \\ g \ \mathrm{R}^{\sigma \to \tau}_{\alpha} \ h & :\equiv & \forall x^{\sigma^{\mathrm{b}}} y^{\sigma} \left(x \ \mathrm{R}^{\sigma}_{\alpha} \ y \to g(x) \ \mathrm{R}^{\tau}_{\alpha} \ h(y) \right). \end{array}$$

Lemma. For any term $t : \rho$ in T, we have

 $t^{\rm b} \mathbf{R}^{\rho}_{\alpha} t$

for any $\alpha : \mathbb{N} \to \mathbb{N}$, assuming $x^{\mathrm{b}} \operatorname{R}_{\alpha} x$ for all $x \in \operatorname{FV}(t)$.

We define a generic element $\Omega : \mathbb{N}^{\mathbf{b}} \to \mathbb{N}^{\mathbf{b}}$ by $\Omega(f)(\alpha) :\equiv \alpha(f\alpha)$ and have $\Omega \ \mathbf{R}_{\alpha} \ \alpha$ for any $\alpha : \mathbb{N} \to \mathbb{N}$.

Theorem. For any closed term $f: (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ in T, we have $f^{\mathrm{b}}(\Omega)(\alpha) = f(\alpha)$

for all $\alpha : \mathbb{N} \to \mathbb{N}$.

³M. H. Escardó, Continuity of Gödel's system T functionals via effectful forcing, MFPS'2013. Electronic Notes in Theoretical Computer Science 298 (2013), 119–141.

Background	Continuity of T-definable functionals	Other properties/structures	Summary
Continuity of T-definable function	mals		

Continuity predicate

Recall that a function $f:(\mathbb{N}\to\mathbb{N})\to\mathbb{N}$ is continuous if

 $\forall \alpha^{\mathbb{N} \to \mathbb{N}} \; \exists m^{\mathbb{N}} \; \forall \beta^{\mathbb{N} \to \mathbb{N}} \; \left(\left(\forall i < n. \; \alpha_i = \beta_i \right) \to f \alpha = f \beta \right).$

We define a predicate $C_{\rho}\subseteq \rho^{\rm b}$ by

$$\begin{array}{lll} \mathrm{C}_{\mathbb{N}}(f) & :\equiv & f \text{ is continuous} \\ \mathrm{C}_{\sigma \to \tau}(h) & :\equiv & \forall x^{\sigma^{\mathrm{b}}} \left(\mathrm{C}_{\sigma}(x) \to \mathrm{C}_{\tau}(hx) \right). \end{array}$$

Lemma. For any term $t : \rho$ in T, we have

 $C_{\rho}(t^{\rm b})$

assuming $C(x^{b})$ for all $x \in FV(t)$.

Proof. By induction on t. When $t \equiv \text{rec}$, we just need to show that the Kleisli extension preserves C, *i.e.* C(ke(g)) for any $g : \mathbb{N} \to \rho^{\text{b}}$ with $\forall i.C(g(i))$, by induction on ρ .

Background	Continuity of T-definable functionals	Other properties/structures	Summary
Continuity of T-definable functio	nals		

Main result

Lemma. We have

 $C_{\mathbb{N}\to\mathbb{N}}(\Omega).$

Proof. Given a continuous $f : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$, the goal is to show that $\Omega(f)$ $(\equiv \lambda \alpha. \alpha(f\alpha))$ is also continuous. Given $\alpha : \mathbb{N} \to \mathbb{N}$, let m be the modulus of continuity of f at α . Then $\max(m, f(\alpha) + 1)$ is a modulus of $\Omega(f)$ at α .

Theorem. Every T-definable function $f : (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ is continuous. Proof. By the previous two lemmas, we know that $f^{\mathbf{b}}(\Omega)$ is continuous. Because f and $f^{\mathbf{b}}(\Omega)$ are pointwise equal and continuity is extensional,

Because f and $f^{B}(\Omega)$ are pointwise equal and continuity is extensi f is also continuous.

Background	Continuity of T-definable functionals	Other properties/structures	Summary O
Continuity of T-definable function	nals		

T-definable moduli of continuity

Theorem. For any T-definable function $f: (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$, there is a term $m: (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ in T internalizing a modulus of continuity of f.

Idea: combine the construction of continuity moduli with the b-translation. The type translation $\rho\mapsto\rho^{\rm b}$ becomes

$$\begin{split} \mathbb{N}^{\mathbf{b}} & :\equiv \quad ((\mathbb{N} \to \mathbb{N}) \to \mathbb{N}) \times ((\mathbb{N} \to \mathbb{N}) \to \mathbb{N}) \\ \sigma \to \tau)^{\mathbf{b}} & :\equiv \quad \sigma^{\mathbf{b}} \to \tau^{\mathbf{b}}. \end{split}$$

We write $w \equiv \langle V_w; M_w \rangle$ for $w : \mathbb{N}^{\mathbf{b}}$ and have the term translation $t \mapsto t^{\mathbf{b}}$

$$\begin{array}{lll} & \cdots & :\equiv & \cdots \\ & 0^{\mathbf{b}} & :\equiv & \langle \lambda \alpha.0; \lambda \alpha.0 \rangle \\ \mathrm{succ}^{\mathbf{b}} & :\equiv & \lambda x. \langle \mathrm{succ} \circ \mathbf{V}_x; \mathbf{M}_x \rangle \\ \mathrm{rec}^{\mathbf{b}} & :\equiv & \mathbf{ke}(\mathrm{rec}(a)(\lambda k.f \langle \lambda \alpha.k; \lambda \alpha.0 \rangle)) \end{array}$$

where the base case of the Kleisli extension becomes

$$\begin{split} \mathbf{k} \mathbf{e}^{\mathbb{N}}(g)(f) &:= \langle \lambda \alpha. \mathcal{V}_{g(\mathcal{V}_{f}(\alpha))}(\alpha); \lambda \alpha. \max(\mathcal{M}_{g(\mathcal{V}_{f}(\alpha))}(\alpha), \mathcal{M}_{f}(\alpha)) \rangle. \end{split}$$
The generic element becomes $\mathbf{\Omega}(f) &:= \langle \lambda \alpha. \alpha(\mathcal{V}_{f}(\alpha)); \lambda \alpha. \max(\mathcal{M}_{f}(\alpha), \operatorname{succ}(\mathcal{V}_{f}(\alpha))) \rangle. \end{split}$

Background	Continuity of T-definable functionals	Other properties/structures	Summary
Other properties (structures	000000	•0	0

Replacing the continuity predicate

Without changing our b-translation, we can prove various properties/structures of T-definable functions $(\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ with different predicates:

- B_N(f) :≡ there exists a bar-recursion functional controlled by f
 We recover Oliva and Steila's proof⁴ of Schwichtenberg's bar recursion closure theorem of type level 0.
- ▶ UC_N(f) := $f|_{2^N}$ is uniformly continuous We prove that the restriction of any T-definable f from $\mathbb{N} \to \mathbb{N}$ to $\mathbb{N} \to 2$ is uniformly continuous.
- ▶ D_N(f) :≡ f has a dialogue tree representation We recover Escardó's result⁵ without full model construction.

▶ ..

The case of function spaces in the above predicates is defined as usual.

⁴P. Oliva and S. Steila, A direct proof of Schwichtenberg's bar recursion closure theorem, J. Symbolic Logic 83 (2018), no. 1, 70–83.

⁵M. H. Escardó, Continuity of Gödel's system T functionals via effectful forcing, MFPS'2013. Electronic Notes in Theoretical Computer Science 298 (2013), 119–141.

Background	Continuity of T-definable functionals	Other properties/structures	Summary
000	000000	○●	O
Other properties/structures			

Generalizing the b-translation

The term translation $(t\mapsto t^{\rm b}):\rho\to\rho^{\rm b}$ is independent of the choice of X in the type translation

$$\begin{array}{ccc} \mathbb{N}^{\mathrm{b}} & :\equiv & X \to \mathbb{N} \\ (\sigma \to \tau)^{\mathrm{b}} & :\equiv & \sigma^{\mathrm{b}} \to \tau^{\mathrm{b}}. \end{array}$$

Hence we can generalize our syntactic method to prove properties/structures of T-definable functionals of arbitrary type, provided that we can define a $\Omega: X^{\rm b}$ with (i) Ω ${\rm R}^X_\alpha$ α for all $\alpha: X$ and (ii) Ω satisfies the predicate.

- $X \equiv 1$ the identity translation
- $\blacktriangleright X \equiv \mathbb{N}$

Take $\Omega :\equiv id_{\mathbb{N}}$ and try to prove a variant of Ishihara's BD- \mathbb{N} (w.i.p.)

- $\blacktriangleright \ X \equiv \mathbb{N} \to \mathbb{N}$
 - •••
- $\blacktriangleright \ X \equiv \mathbb{N} \to \mathbb{N} \to \mathbb{N}$

Take $\Omega := \lambda fgx.x(fx)(gx)$ and recover Oliva and Steila's proof for bar recursion of type level 1.

Background	Continuity of T-definable functionals	Other properties/structures	Summary
000	000000	OO	●
Summary			

Summary and ...

- We introduce a syntactic approach to prove continuity and other properties/structures of T-definable functionals.
- ▶ We want to extend the method to dependent types, but don't know how.
- Our development is constructive and has been formalized/implemented in Agda to compute moduli of (uniform) continuity.

http://cj-xu.github.io/agda/TCont/

Thank you!