
Inferring Region Types
via an Abstract Notion of
Environment Transformation

Chuangjie Xu0

Chuangjie Xu  (j.w.w. Ulrich Schöpp)

APLAS’22, 5 Dec 2022, Auckland, New Zealand



Enforcing Secure Programming Guidelines

Chuangjie Xu1

Ø A lightweight tool for this can help programmers to avoid 
making typical errors during the development. 

Ø Does my Java program follow secure programming 
guidelines such as

§ “All inputs must be sanitized.”

§ “Any access to sensitive data must be authorized.”

§ “Any access to sensitive data must be logged.”

§ …

Ø Can guidelines be verified continuously and incrementally?



GuideForce1

Chuangjie Xu2

GuideForce develops effect type systems for lightweight static analysis.

Ø Trace properties of programs

§ Functions of interests emit events, e.g.:
Server.login() emits a login event;  Connection.close() emits a close event

§ Each execution of a program generates a (finite or infinite) trace of events.

§ A guideline = a set of allowed event traces

Ø The type system has effect annotations to give information about the possible traces.

§ E.g., login() ? readData() : close(); :  type & {login read, login close}

Ø If “effect ⊆ guideline”, then ✅ the program adheres to the guideline.

Ø Type inference ⇒ effect computation

1 DFG project number 250888164



Key Concepts

�Effect Annotations

Capture information of terminating and nonterminating runs modularly in the type system.

Chuangjie Xu3

verifyAuthorization() … & {auth} , ∅
readSensitiveData() … & {access} , ∅
LogAccess() … & {log} , ∅
serve() … & {auth, auth access}* ⋅ {log} , {auth, auth access}𝜔

�Region Types

Represent properties of values such as provenance information:

Null | CreatedAt(𝑙) | Unknown | Tainted | Untainted | ... 

They improve the precision of trace-property analysis:

• Objects in different regions are analyzed separately

• Method with inputs in different regions has different effects



Type Inference in the Previous Work

�Redundant analysis

Chuangjie Xu4

...
object1.foo(input1);
...
object1.foo(input2);
...
object2.foo(input3);
...

In [GHL12, BGH13, EHZ17, ESX21], the code of the method foo is analyzed multiple times, 
one for each invocation if the objects and inputs are in different regions.

�Goal: A type inference algorithm that analyzes the code only once.

void foo(C d) {
...
...
...

}



Idea of Our New Type Inference Algorithm

Chuangjie Xu5

Generate a summary to each method – abstract environment transformation

• Composition and join – constraint generation

• Equality constraint 𝑥 ∶↦ 𝑦. 𝑓 for variable assignment  𝑥 = 𝑦. 𝑓

• Subtyping constraints 𝑦. 𝑓 ∶≥ 𝑥 for field assignment 𝑦. 𝑓 = 𝑥 (weak update for fields)

• Instantiation 𝑒𝑛𝑣 ↦ 𝜎(𝑒𝑛𝑣) – constraint solving

• Get the return type of the method from the updated environment 𝜎(𝑒𝑛𝑣)



Types, Environments and Constraints
�Assume a finite set of atomic types 𝑇𝑦𝑝 = 𝐴, 𝐵, 𝐶, … , and call a set of atomic types a type.

• Write ⊥ to denote the empty set

• Write 𝐴 to denote the singleton 𝐴
• Write 𝐴 ∨ 𝐵 ∨ 𝐶 to denote  the set 𝐴, 𝐵, 𝐶

Chuangjie Xu6

�A typing environment is a mapping 𝑉𝑎𝑟 ∪ 𝑇𝑦𝑝 × 𝐹𝑙𝑑 ⇀ 𝒫 𝑇𝑦𝑝
• E.g., 𝑥: 𝐴, 𝐴. 𝑓: 𝐵 ∨ 𝐶
• 𝐴. 𝑓 represents the field 𝑓 of any object of type 𝐴

�Possible value 𝑣 of a constraint 𝑥 ∶↦ 𝑣 or 𝑦. 𝑓 ∶≥ 𝑣 can be

• a variable 𝑥,

• a type 𝐴,

• a field access path 𝑥. 𝑓. 𝑔. ℎ or 𝐴. 𝑓. 𝑔 (?)

• a set containing any of the above 𝑥 ∨ 𝐴 ∨ 𝑦. 𝑔



Access Graphs

�Use finite representation of access paths, such as access graphs:

E.g.,

Chuangjie Xu7

�The lengths of access paths may be unbounded. Consider

The return type can be the same of this, this.next, this.next.next, …

Node last() {
if (next == null) {return this;}
else {return next.last();} 

} 

this nextthis nextthis

this.ℰ
= { this }

this.<next,∅,next>
= { this.next }

this.<next,{(next,next)},next>

= { this.next.next,

this.next.next.next,, … }



Abstract Environment Transformations

Chuangjie Xu8

�Constraints

• We call ⋁𝑏!. 𝐺! a term, where 𝑏! ∈ 𝑉𝑎𝑟 ∪ 𝑇𝑦𝑝 and 𝐺 a field graph

• 𝑥 ∶↦ ⋁𝑏!. 𝐺!
• 𝑎. 𝐺 ∶≥ ⋁𝑏!. 𝐺! where 𝑎 ∈ 𝑉𝑎𝑟 ∪ 𝑇𝑦𝑝 and 𝐺 nonempty

�Abstract transformation 𝑥" ∶↦ 𝑢", … , 𝑥# ∶↦ 𝑢#, 𝑏". 𝐺" ∶≥ 𝑣", … , 𝑏$. 𝐺$ ∶≥ 𝑣$
• All the keys 𝑥! and 𝑏%. 𝐺% are different

• 𝑢! ≠ 𝑥!
• 𝑣! ≠ ⊥

�Example:

for the code



Operations on Abstract Transformations

Chuangjie Xu9

� Instantiation  𝑒𝑛𝑣 ↦ 𝜎(𝑒𝑛𝑣)
• A least fixed-point algorithm to solve constraints

• Computing reachable fields 𝐴. 𝑓 in access graphs 𝐵. ℎ, 𝐸, 𝑓

� Join 𝜎 ∨ 𝜃
• Pointwise defined

• E.g., 𝑥 ∶↦ 𝐶 ∨ 𝑥 ∶↦ 𝐷, 𝑦 ∶↦ 𝑧 = 𝑥 ∶↦ 𝐶 ∨ 𝐷, 𝑦 ∶↦ 𝑦 ∨ 𝑧

�Composition  𝜎𝜃
• Variable substitution, essentially

• E.g., 𝑥. 𝑓 ∶↦ 𝑥 ∨ 𝑦. 𝑔 𝑥 ∶↦ 𝐶 = 𝐶. 𝑓 ∶↦ 𝐶 ∨ 𝑦. 𝑔, 𝑥 ∶↦ 𝐶

Theorem:

• 𝜎 𝜃 𝑒𝑛𝑣 ⊑ 𝜎𝜃 𝑒𝑛𝑣
• 𝜎 𝑒𝑛𝑣 ⊔ 𝜃 𝑒𝑛𝑣 ⊑ 𝜎 ∨ 𝜃 𝑒𝑛𝑣



Type Inference via Abstract Transformations

Chuangjie Xu10

We work with some region type system on Featherweight Java and
choose 𝑇𝑦𝑝 to be the set of regions.

�𝑇 𝐶,𝑚 = 𝜎, 𝑢 : summary of method 𝑚 to use in the analysis (Step 2)

• The transformation 𝜎 captures the change of types in 𝑚
• The term 𝑢 will be instantiated to a return type of 𝑚

�𝑇 is compute via a fixed-point algorithm using 𝑒 : 𝐴𝑇𝑟𝑎𝑛𝑠 × 𝑇𝑚

Step 1: Compute an abstract method table  𝑇: 𝐶𝑙𝑠 × 𝑀𝑡𝑑 ⇀ 𝐴𝑇𝑟𝑎𝑛𝑠 × 𝑇𝑚

…



Type Inference via Abstract Transformations

Chuangjie Xu11

Step 2: Use 𝑇 to compute the method and field typing of the program

� Suppose the object where 𝑚 lives is in region 𝑟 and
the inputs of 𝑚 are in regions 𝑠", … , 𝑠#

For example, we compute the type of a method 𝑚 of class 𝐶 as follows: 

� (𝜎, 𝑢) = 𝑇 𝐶,𝑚
• The transformation 𝜎 captures the change of types in 𝑚
• The term 𝑢 will be instantiated to a return type of 𝑚

�Update the environment  𝑒𝑛𝑣 = 𝜎 this: 𝑟, 𝑥": 𝑠", … , 𝑥#: 𝑠#, …
where 𝑥", … , 𝑥# are the arguments of m

� Instantiate 𝑢 𝑒𝑛𝑣 to get the return type of 𝑚



Conclusion and Discussion

Chuangjie Xu12

�We introduce a theory of abstract environment transformations to summarize how types 
are changed in a program

�We introduce an inference algorithm to compute region information of (Featherweight) Java 
programs which can avoid redundant code analysis.

�The inference algorithm can be extended to a more efficient region-sensitive analysis of 
trace properties.

Thank you!


