Partial Univalence in n-truncated Type Theory

Christian Sattler ¹ <u>Andrea Vezzosi</u> ²

¹University of Nottingham

²IT University of Copenhagen

Herrsching, 18 December 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$\mathsf{UIP} + \mathsf{UA} \vdash \bot$

Well known that Uniqueness of Identity Proofs contradicts Univalence:

- ▶ There are two distinct paths Bool = Bool:
- ua(id) and ua(not)
- ua(id)*true = true
- ua(not)*true = false

$\mathsf{UIP} + \mathsf{UA} \vdash \bot$

Well known that Uniqueness of Identity Proofs contradicts Univalence:

- ▶ There are two distinct paths Bool = Bool:
- ua(id) and ua(not)
- ua(id)*true = true
- ua(not)*true = false

Nevertheless UIP still appealing because it cuts down the complexity of paths.

- coherence data is at most finite.
- dealing with path algebra or building higher dimensional cubes is not very fun.

HoTT without UA

Even without univalence HoTT still contributes:

► The hierarchy of *n*-types. In particular propositions: isProp(A) := (x y : A) → x = y

 Higher Inductive Types: truncation, initial algebras, colimits.

These are very useful even in a type theory where we assume every type is truncated.

We still need some Univalence

When working with HITs we often use univalence for hprops.

Membership for Kuratowski Finite Sets defined by recursion: e.g. need to prove a ∈ (x ∪ y) = a ∈ (y ∪ x)

Effectiveness of quotients: [a] =_{A/R} [b] ≃ R(a, b)
 ...

So even with UIP it is desirable to have

 $ua_{-1}: isProp(A) \rightarrow isProp(B) \rightarrow A \simeq B \rightarrow A = B$

Partial Univalence is consistent with UIP

We build a model of a type theory with

- $\blacktriangleright \ \Pi, \Sigma, W, \mathbb{N}, U_0, U_1, ...$
- n-truncated Higher Inductive Types
- n-truncatedness for every type.
- ▶ univalence restricted to (*n*-1)-types.

The model interprets types as elements of universes V_ℓ which are constructed as HITs, and proven n-truncated by an encode/decode argument.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

The UIP case is done by taking n = 0.

Also in the following we assume $n \ge 0$.

Starting Small

In HoTT with Higher Induction Recursion:

data V : U

$$\overline{\Pi}$$
: (A: V) → (B: El(A) → V) → V

 univ_{A,B:V}: type_(n-1)(El(A)) → type_(n-1)(El(B))
 → El(A) ≃ El(B) → A = B

 $\mathsf{EI}:\mathsf{V}\to\mathsf{U}$

$$\blacktriangleright \operatorname{El}(\overline{\Pi} A B) = (x : \operatorname{El}(A)) \to \operatorname{El}(B(x))$$

$$\blacktriangleright \mathsf{El}(\mathsf{univ}_{A,B} A_{n-1} B_{n-1} e) = \mathsf{ua}(e)$$

univ is enough to recover univalence for (n-1)-types:

 $\mathsf{type}_{(n-1)}(\mathsf{El}(A)) \to \mathsf{isContr}(\Sigma(B:\mathsf{V}).\mathsf{El}(B) \simeq \mathsf{El}(A))$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Indexed Family InV

To discuss equality in V it's actually more convenient to work with an indexed type.

data
$$\operatorname{InV} : U_0 \to U_1$$

 $\blacktriangleright \overline{\Pi}_{A,B} : \operatorname{InV}(A) \to ((a : A) \to \operatorname{InV}(B(a)))$
 $\to \operatorname{InV}((a : A) \to B(a))$
 $\flat \operatorname{univ}_{A,B} : \operatorname{type}_{(n-1)}(A) \to \operatorname{type}_{(n-1)}(B)$
 $\to (\overline{A} : \operatorname{InV}(A)) \ (\overline{B} : \operatorname{InV}(B))$
 $\to (e : A \simeq B) \to \overline{A} =_{\operatorname{InV}(\operatorname{ua}(e))} \overline{B}$

 $V = \Sigma(A : U_0).InV(A)$

 $\begin{array}{l} \mathsf{EI}:\mathsf{V}\to\mathsf{U}_0\\ \mathsf{EI}(\mathsf{A},_)=\mathsf{A} \end{array}$

Indexed Family InV

To discuss equality in V it's actually more convenient to work with an indexed type.

data
$$\operatorname{InV} : U_0 \to U_1$$

 $\blacktriangleright \overline{\Pi}_{A,B} : \operatorname{InV}(A) \to ((a : A) \to \operatorname{InV}(B(a)))$
 $\to \operatorname{InV}((a : A) \to B(a))$
 $\flat \operatorname{univ}_{A,B} : \operatorname{type}_{(n-1)}(A) \to \operatorname{type}_{(n-1)}(B)$
 $\to (\overline{A} : \operatorname{InV}(A)) \ (\overline{B} : \operatorname{InV}(A))$
 $\to (\underline{e} : A \simeq B) \to \overline{A} =_{\operatorname{InV}(A)} \overline{B}$

 $\mathsf{V}=\Sigma(A:\mathsf{U}_0).\mathsf{InV}(A)$

 $\begin{array}{l} \mathsf{EI}:\mathsf{V}\to\mathsf{U}_0\\ \mathsf{EI}(\mathsf{A},_)=\mathsf{A} \end{array}$

Univalence: propositional codes

data
$$InV : U_0 \rightarrow U_1$$

 $\overline{\Pi}_{A,B} : InV(A) \rightarrow ((a : A) \rightarrow InV(B(a)))$
 $\rightarrow InV((a : A) \rightarrow B(a))$
 $univ_A : type_{(n-1)}(A)$
 $\rightarrow (\overline{A} : InV(A)) (\overline{B} : InV(A))$
 $\rightarrow \overline{A} =_{InV(A)} \overline{B}$
 $V = \Sigma(A : U_0).InV(A)$
El : $V \rightarrow U_0$
El(A, _) = A

Given X : V we will write \overline{X} for the second projection.

Equality in V

We wish to show $type_{(n-1)}(X =_V Y)$

Of course $X =_{V} Y \simeq \Sigma(p : El(X) = El(Y))$. $\overline{X} =_{InV(p)} \overline{Y}$.

Two main cases for $\overline{X} =_{InV(p)} \overline{Y}$: 1. type_(n-1)(El(X)) 2. $\overline{\Pi} S_0 T_0 =_{InV(p)} \overline{\Pi} S_1 T_1$

In case (1) we know isContr($\overline{X} =_{InV(p)} \overline{Y}$) by univ.

Case (2) more involved.

$\overline{\Pi}_{\mathcal{A}_0,\mathcal{B}_0} S_0 T_0 =_{\mathsf{InV}(\rho)} \overline{\Pi}_{\mathcal{A}_1,\mathcal{B}_1} S_1 T_1$

Again two cases: equal structurally or equal (n-1)-types.

▶
$$StrEq(S_0, T_0, S_1, T_1, p) :=$$

• type_(n-1)((x :
$$A_0$$
) $\rightarrow B_0(x)$)

The equality will be equivalent to the **join** of the two. Note that the join is contractible when $type_{(n-1)}((x : A_0) \rightarrow B_0(x)).$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

encode/decode proof

Define:

► Eq :
$$(X_0 X_1 : V) \rightarrow El(X_0) =_{U_0} El(X_1)$$

 $\rightarrow \Sigma(E : U_1). type_{(n-1)}(El(X_0)) \rightarrow isContr(E)$

by double induction on the InV arguments, where the return type is contractible in the univ cases.

• encode_{X₀,X₁,p} :
$$\overline{X}_0 =_{InV(p)} \overline{X}_1 \rightarrow Eq(X_0, X_1, p)$$

by path induction and then induction on the code.

•
$$(c : Eq(X_0, X_1, p)) \rightarrow fiber(encode_{X_0, X_1, p}, c)$$

i.e., there is a decode function, right inverse of encode.

The whole equivalence then follows from contractibility of singletons.

 $type_n(V)$

Show type_(n-1)(
$$\Sigma(p : El(X_0) = El(X_1)).Eq(\overline{X}_0, \overline{X}_1, p)$$
).

We proceed by induction on \overline{X}_0 and \overline{X}_1 . Only relevant case when they are both $\overline{\Pi}$:

$$egin{aligned} \mathsf{type}_{(n-1)}(\Sigma(p:\mathsf{El}(X_0)=\mathsf{El}(X_1)).\ & \mathsf{type}_{(n-1)}(\mathsf{El}(X_0))\star\mathsf{StrEq}(S_0,\,T_0,\,S_1,\,T_1,\,p)) \end{aligned}$$
 where $X_i=(x:A_i) o B_i(x)$

By abstract nonsense it is sufficient to show:

•
$$type_{(n-1)}(\Sigma(p : El(X_0) = El(X_1)). type_{(n-1)}(El(X_0)))$$

•
$$type_{(n-1)}(\Sigma(p : El(X_0) = El(X_1)). StrEq(S_0, T_0, S_1, T_1, p))$$

The first follows from univalence.

$$type_n(V)$$

To show

 $\mathsf{type}_{(n-1)}(\Sigma(p:\mathsf{El}(X_0)=\mathsf{El}(X_1)).\mathsf{StrEq}(S_0,\,T_0,S_1,\,T_1,p))$

we observe the type itself consists of these five components:

p and *coh* form a contractible pair, while each of (a, s) and (b, t) are handled by induction hypothesis.

More type formers

The construction generalizes to an indexed container describing the type formers, and to different universes.

$$S: U_0 \to U_1$$

$$P_A: S(A) \to U_0 \to U_1$$

$$Ext_{S,P}(X, A) := \Sigma(s: S(A)).((R: U_0)(p: P_A(s, R)) \to XR)$$

$$data \ lnV: U_0 \to U_1$$

$$con_A: Ext_{S,P}(lnV, A) \to lnV(A)$$

$$univ_A: type_{(n-1)}(A) \to (\overline{A}_0: lnV(A))(\overline{A}_1: lnV(A))$$

$$\to \overline{A}_0 =_{lnV(A)} \overline{A}_1$$

As long as the extension of the container preserves total types being n-truncated, in a specific way.

Preserving truncatedness

During the proof that $type_n(V)$ we need this:

Given

•
$$(s, t) : \operatorname{Ext}_{S,P}(\operatorname{InV}, A)$$

• $(R_0 R_1 : U_0) (p_0 : P_A(s, R_0)) (p_1 : P_A(s, R_1)) \rightarrow$
 $\operatorname{type}_{(n-1)}(\Sigma(r : R_0 = R_1). t R_0 p_0 =_{\operatorname{InV}(r)} t R_1 p_1).$

It follows that

$$\mathsf{type}_{(n-1)}((A, s, t) =_{\Sigma(A: U_0).\mathsf{Ext}_{S, P}(\mathsf{InV}, A)} (A, s, t))$$

In the case for Π types this property corresponds to the step about StrEq(S_0 , T_0 , S_1 , T_1 , p).

This condition only refers to the arguments of the type former, so truncated HITs can be added without worrying about how complex the constructors are.

Example: code for truncated PushOuts

Having (truncated) pushouts in V would mean adding a code with this signature:

$$\overline{\mathsf{PO}} : (A B C : \mathsf{V}) \to (f : \mathsf{El}(A) \to \mathsf{El}(B)) \to (g : \mathsf{El}(A) \to \mathsf{El}(C)) \to \mathsf{V}$$

Equalities regarding the fields A, B, C are handled by induction hypothesis as in the case for Π types.

Equalities regarding f and g are already (n-1)-truncated because the types are n-truncated.

A Universe Hierarchy

Given a selection of type formers,

repeat $InV:U_0\rightarrow U_1$ construction for universe $U_\ell {:}$

 ${\sf InV}_\ell:{\sf U}_\ell\to{\sf U}_{\ell+1}$

adding codes for the previous universes:

$$v_0: \mathsf{InV}_\ell(\mathsf{V}_0), \dots, v_{\ell-1}: \mathsf{InV}_\ell(\mathsf{V}_{\ell-1})$$

here we rely on $\mathsf{V}_0,\ldots,\mathsf{V}_{\ell-1}$ being n-truncated.

A Universe Hierarchy

Given a selection of type formers,

repeat $InV:U_0\rightarrow U_1$ construction for universe $U_\ell {:}$

 $\mathsf{InV}_\ell:\mathsf{U}_\ell\to\mathsf{U}_{\ell+1}$

adding codes for the previous universes:

$$v_0: \mathsf{InV}_\ell(\mathsf{V}_0), \dots, v_{\ell-1}: \mathsf{InV}_\ell(\mathsf{V}_{\ell-1})$$

here we rely on $V_0,\ldots,V_{\ell-1}$ being n-truncated.

We obtain a hierarchy of universes V_0, V_1, \ldots

with corresponding $lift_\ell:V_\ell\to V_{\ell+1}$ functions providing explicit cumulativity.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Model Partially Univalent n-Truncated type theory Let $C = (Cxt_{C}, Ty_{C}^{\ell}(\Gamma), Tm_{C}(\Gamma, A))$ be a stratified CwF. Assume that C models univalence and Indexed HITs. Then the preceding construction gives types V_{ℓ} in C. We define a stratified CwF D where types are elements of V_{ℓ} :

$$\blacktriangleright \operatorname{Cxt}_{\mathcal{D}} := \operatorname{Cxt}_{\mathcal{C}}$$

$$\succ \operatorname{Ty}_{\mathcal{D}}^{\ell}(\Gamma) := \operatorname{Tm}_{\mathcal{C}}(\Gamma, \mathsf{V}_{\ell})$$

$$Tm_{\mathcal{D}}(\Gamma, X) := Tm_{\mathcal{C}}(\Gamma, El(X))$$

Then \mathcal{D} models univalence restricted to (n-1)-types and the axiom that every type is n-truncated.

Consistency follows by picking a \mathcal{C} , e.g., a variant of cubical sets.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Does it compute?

If we construct V in a Cubical Type Theory with Glue $A[\varphi \vdash (T, e)] : U$

we automatically get Glue restricted to (n-1)-types in V:

```
\mathsf{Glue}\,\mathsf{A}\,\mathsf{A}_{n-1}\,[\varphi\vdash(\mathsf{T},e)]:\mathsf{V}
```

where A and T are in V and A_{n-1} : type_{n-1}(El(A))

Introducing a witness of n-truncatedness for the universes will require more work.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Conclusion

It's fine to assume both h-prop extensionality and UIP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

In fact it's fine to assume (n-1)-univalence and n-truncatedness.

Conclusion

- It's fine to assume both h-prop extensionality and UIP.
- In fact it's fine to assume (n-1)-univalence and n-truncatedness.

Probably one more model construction and we can close this Agda issue:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A variant of Cubical Agda that is consistent with UIP #3750

() Open nad opened this issue on May 4 · 16 comments