
Partial Univalence in
n-truncated Type Theory

Christian Sattler 1 Andrea Vezzosi 2

1University of Nottingham

2IT University of Copenhagen

Herrsching, 18 December 2019



UIP + UA ` ⊥
Well known that Uniqueness of Identity Proofs contradicts
Univalence:
I There are two distinct paths Bool = Bool:
I ua(id) and ua(not)
I ua(id)∗true = true
I ua(not)∗true = false

Nevertheless UIP still appealing because it cuts down the
complexity of paths.
I coherence data is at most finite.
I dealing with path algebra or building higher dimensional

cubes is not very fun.



UIP + UA ` ⊥
Well known that Uniqueness of Identity Proofs contradicts
Univalence:
I There are two distinct paths Bool = Bool:
I ua(id) and ua(not)
I ua(id)∗true = true
I ua(not)∗true = false

Nevertheless UIP still appealing because it cuts down the
complexity of paths.
I coherence data is at most finite.
I dealing with path algebra or building higher dimensional

cubes is not very fun.



HoTT without UA
Even without univalence HoTT still contributes:
I The hierarchy of n-types.

In particular propositions:
isProp(A) := (x y : A)→ x = y

I Higher Inductive Types: truncation, initial algebras,
colimits.

These are very useful even in a type theory where we assume
every type is truncated.



We still need some Univalence
When working with HITs we often use univalence for hprops.
I Membership for Kuratowski Finite Sets defined by

recursion: e.g. need to prove a ∈ (x ∪ y) = a ∈ (y ∪ x)

I Effectiveness of quotients: [a] =A/R [b] ' R(a, b)

I . . .

So even with UIP it is desirable to have

ua−1 : isProp(A)→ isProp(B)→ A ' B → A = B



Partial Univalence is consistent with UIP

We build a model of a type theory with
I Π,Σ,W ,N,U0,U1, ...

I n-truncated Higher Inductive Types
I n-truncatedness for every type.
I univalence restricted to (n -1)-types.

The model interprets types as elements of universes V` which
are constructed as HITs, and proven n-truncated by an
encode/decode argument.

The UIP case is done by taking n = 0.

Also in the following we assume n ≥ 0.



Starting Small
In HoTT with Higher Induction Recursion:

data V : U
I Π : (A : V)→ (B : El(A)→ V)→ V
I univA,B:V : type(n -1)(El(A))→ type(n -1)(El(B))

→ El(A) ' El(B)→ A = B

El : V→ U
I El(Π A B) = (x : El(A))→ El(B(x))

I El(univA,B An -1 Bn -1 e) = ua(e)

univ is enough to recover univalence for (n -1)-types:

type(n -1)(El(A))→ isContr(Σ (B : V).El(B) ' El(A))



Indexed Family InV
To discuss equality in V it’s actually more convenient to work
with an indexed type.

data InV : U0 → U1

I ΠA,B : InV(A)→ ((a : A)→ InV(B(a)))
→ InV((a : A)→ B(a))

I univA,B : type(n -1)(A)→ type(n -1)(B)

→ (A : InV(A)) (B : InV(B))

→ (e : A ' B)→ A =InV(ua(e)) B

V = Σ(A : U0).InV(A)

El : V→ U0

El(A,_) = A



Indexed Family InV
To discuss equality in V it’s actually more convenient to work
with an indexed type.

data InV : U0 → U1

I ΠA,B : InV(A)→ ((a : A)→ InV(B(a)))
→ InV((a : A)→ B(a))

I univA,�B : type(n -1)(A)→
�������type(n -1)(B)

→ (A : InV(A)) (B : InV(A))

→ ������
(e : A ' B) → A =InV(A) B

V = Σ(A : U0).InV(A)

El : V→ U0

El(A,_) = A



Univalence: propositional codes
data InV : U0 → U1

I ΠA,B : InV(A)→ ((a : A)→ InV(B(a)))
→ InV((a : A)→ B(a))

I univA : type(n -1)(A)

→ (A : InV(A)) (B : InV(A))

→ A =InV(A) B

V = Σ(A : U0).InV(A)

El : V→ U0

El(A,_) = A

Given X : V we will write X for the second projection.



Equality in V
We wish to show type(n -1)(X =V Y )

Of course X =V Y ' Σ(p : El(X ) = El(Y )). X =InV(p) Y .

Two main cases for X =InV(p) Y :
1. type(n -1)(El(X ))

2. Π S0 T0 =InV(p) Π S1 T1

In case (1) we know isContr(X =InV(p) Y ) by univ.

Case (2) more involved.



ΠA0,B0 S0 T0 =InV(p) ΠA1,B1 S1 T1

Again two cases: equal structurally or equal (n -1)-types.
I StrEq(S0,T0, S1,T1, p) :=

I a : A0 = A1
I s : S0 =InV(a) S1
I b : B0 =a→U0 B1
I t : T0 =(x :a)→InV(b(x)) T1
I coh : p = (x : a)→ b(x)

I type(n -1)((x : A0)→ B0(x))

The equality will be equivalent to the join of the two.

Note that the join is contractible when
type(n -1)((x : A0)→ B0(x)).



encode/decode proof
Define:
I Eq : (X0 X1 : V)→ El(X0) =U0 El(X1)

→ Σ(E : U1). type(n -1)(El(X0))→ isContr(E )

by double induction on the InV arguments, where the
return type is contractible in the univ cases.

I encodeX0,X1,p : X 0 =InV(p) X 1 → Eq(X0,X1, p)

by path induction and then induction on the code.

I (c : Eq(X0,X1, p))→ fiber(encodeX0,X1,p, c)

i.e., there is a decode function, right inverse of encode.

The whole equivalence then follows from contractibility of
singletons.



typen(V)

Show type(n -1)(Σ(p : El(X0) = El(X1)).Eq(X 0,X 1, p)).

We proceed by induction on X 0 and X 1.
Only relevant case when they are both Π:

type(n -1)(Σ(p : El(X0) = El(X1)).
type(n -1)(El(X0)) ? StrEq(S0,T0, S1,T1, p))

where Xi = (x : Ai)→ Bi(x)

By abstract nonsense it is sufficient to show:

I type(n -1)(Σ(p : El(X0) = El(X1)). type(n -1)(El(X0)))

I type(n -1)(Σ(p : El(X0) = El(X1)). StrEq(S0,T0, S1,T1, p))

The first follows from univalence.



typen(V)

To show

type(n -1)(Σ(p : El(X0) = El(X1)).StrEq(S0,T0, S1,T1, p))

we observe the type itself consists of these five components:

I p : El(X0) = El(X1)

I a : A0 = A1

I s : S0 =InV(a) S1

I b : B0 =a→U0 B1

I t : T0 =(x :a)→InV(b(x)) T1

I coh : p = (x : a)→ b(x)

p and coh form a contractible pair, while each of (a, s) and
(b, t) are handled by induction hypothesis.



More type formers
The construction generalizes to an indexed container
describing the type formers, and to different universes.

I S : U0 → U1

I PA : S(A)→ U0 → U1

ExtS ,P(X ,A) := Σ(s : S(A)).((R : U0)(p : PA(s,R))→ X R)

data InV : U0 → U1

I conA : ExtS ,P(InV,A)→ InV(A)

I univA : type(n -1)(A)→ (A0 : InV(A)) (A1 : InV(A))

→ A0 =InV(A) A1

As long as the extension of the container preserves total types
being n-truncated, in a specific way.



Preserving truncatedness
During the proof that typen(V) we need this:

Given
I (s, t) : ExtS ,P(InV,A)
I (R0 R1 : U0) (p0 : PA(s,R0)) (p1 : PA(s,R1))→

type(n -1)(Σ(r : R0 = R1). t R0 p0 =InV(r) t R1 p1).

It follows that

type(n -1)((A, s, t) =Σ(A:U0).ExtS,P(InV,A) (A, s, t))

In the case for Π types this property corresponds to the step
about StrEq(S0,T0, S1,T1, p).

This condition only refers to the arguments of the type former,
so truncated HITs can be added without worrying about how
complex the constructors are.



Example: code for truncated PushOuts
Having (truncated) pushouts in V would mean adding a code
with this signature:

PO : (AB C : V)→
(f : El(A)→ El(B))→ (g : El(A)→ El(C ))→ V

Equalities regarding the fields A,B ,C are handled by induction
hypothesis as in the case for Π types.

Equalities regarding f and g are already (n -1)-truncated
because the types are n-truncated.



A Universe Hierarchy
Given a selection of type formers,

repeat InV : U0 → U1 construction for universe U`:

InV` : U` → U`+1

adding codes for the previous universes:

v0 : InV`(V0), . . . , v`−1 : InV`(V`−1)

here we rely on V0, . . . ,V`−1 being n-truncated.

We obtain a hierarchy of universes V0,V1, . . .

with corresponding lift` : V` → V`+1 functions providing
explicit cumulativity.



A Universe Hierarchy
Given a selection of type formers,

repeat InV : U0 → U1 construction for universe U`:

InV` : U` → U`+1

adding codes for the previous universes:

v0 : InV`(V0), . . . , v`−1 : InV`(V`−1)

here we rely on V0, . . . ,V`−1 being n-truncated.

We obtain a hierarchy of universes V0,V1, . . .

with corresponding lift` : V` → V`+1 functions providing
explicit cumulativity.



Model Partially Univalent n-Truncated type theory
Let C = (CxtC,Ty`C(Γ),TmC(Γ,A)) be a stratified CwF.

Assume that C models univalence and Indexed HITs.

Then the preceding construction gives types V` in C.
We define a stratified CwF D where types are elements of V`:

I CxtD := CxtC
I Ty`D(Γ) := TmC(Γ,V`)

I TmD(Γ,X ) := TmC(Γ,El(X ))

Then D models univalence restricted to (n -1)-types and the
axiom that every type is n-truncated.

Consistency follows by picking a C, e.g., a variant of cubical
sets.



Does it compute?
If we construct V in a Cubical Type Theory with

GlueA [ϕ ` (T , e)] : U

we automatically get Glue restricted to (n -1)-types in V:

GlueAAn -1 [ϕ ` (T , e)] : V

where A and T are in V and An -1 : typen -1(El(A))

Introducing a witness of n-truncatedness for the universes will
require more work.



Conclusion

I It’s fine to assume both h-prop extensionality and UIP.
I In fact it’s fine to assume (n -1)-univalence and

n-truncatedness.

Probably one more model construction and we can close this
Agda issue:



Conclusion

I It’s fine to assume both h-prop extensionality and UIP.
I In fact it’s fine to assume (n -1)-univalence and

n-truncatedness.

Probably one more model construction and we can close this
Agda issue:


