Simplicial Sets within Cubical Sets

Thomas Streicher TU Darmstadt jww J. Weinberger

Herrsching December 2019

Computational Meaning of HoTT? (1)

HoTT is **Intensional Type Theory** together with Voevodsky's **Univalence Axiom** (UA) and **Higher Inductive Types** (HITs).

Let us recall what UA says. This requires a few definitions

$$\operatorname{iscontr}(X : \operatorname{Set}) = (\Sigma x : X)(\Pi y : X) \operatorname{Id}_X(x, y)$$

$$isweq(X, Y : Set)(f : X \to Y) = = (\Pi y : Y) iscontr(hfiber(X, Y, f, y))$$

$$\operatorname{Weq}(X, Y : \operatorname{Set}) = (\Sigma f : X \to Y) \operatorname{isweq}(X, Y, f)$$

Computational Meaning of HoTT? (2)

Using the eliminator J for identity types one easily defines a map

$$\operatorname{eqweq}(X,Y:\operatorname{Set}):\operatorname{Id}_{\operatorname{Set}}(X,Y)\to\operatorname{Weq}(X,Y)$$

Then the Univalence Axiom

$$\mathsf{UA} : (\mathsf{\Pi} X, Y : \mathsf{Set}) \mathsf{ isweq}(\mathsf{eqweq}(X, Y))$$

postulates that all maps eqweq(X, Y) are weak equivalences.

It has been shown that **simplicial sets** provide a model of HoTT interpreting types as Kan complexes.

But UA as it is lacks computational meaning: what should be rewrite rules for the constant UA?

T. Coquand et.al. [CCHM] have developed a *Cubical Type Theory* with computational meaning in which one can **derive** UA.

From Simplicial Sets to Cubical Sets (1)

Bezem and Coquand have shown that the theory of simplicial sets is **not constructive**: one cannot even show constructively that Kan complexes are closed under exponentiation!

This limitation, however, can be overcome when working in **cubical sets**.

The crucial property is that representable objects are closed under finite products: in **sSet** the interval \mathbb{I} is representable but $\mathbb{I} \times \mathbb{I}$ isn't!

The site of **sSet** is Δ , the full subcategory of **Poset** on finite non-empty linear posets.

The site of **cSet** is \square , the full subcategory of **Poset** of finite powers of **2**.

Splitting idempotents in \square gives rise to **FL**, the full subcategory of **Poset** on finite lattices.

From Simplicial Sets to Cubical Sets (2)

Notice that \square is op-equivalent to the category of *free finitely generated distributive lattices*. Coquand et.al. – just for convenience – used the opposite of the category of *free finitely generated de Morgan algebras*.

Let $i:\Delta\to \mathbf{FL}$ be the inclusion functor. The restriction functor i^* from $\mathbf{cSet}=\widehat{\mathbf{FL}}$ to $\mathbf{sSet}=\widehat{\Delta}$ has left and right adjoints $i_!$ and i_* , respectively. Since the restriction of the nerve functor Nv to \mathbf{FL} is given by $i^*\circ Y_{\mathbf{FL}}$ we have

$$i_*(X)(L) \cong \mathsf{cSet}(\mathsf{Y}_{\mathsf{FL}}(L), i_*(X)) \cong \mathsf{sSet}(i^*\mathsf{Y}_{\mathsf{FL}}(L)), X) \cong \mathsf{sSet}(\mathsf{Nv}(L), X)$$

from which it follows that i_* (and thus also $i_!$) is full and faithful. Since i^* has a left adjoint $i_!$ (given by left Kan extension of $Y_{FL} \circ i$ along Y_{Δ}) it preserves (finite) limits and thus $i^* \dashv i_*$ is an **injective geometric morphism**.

The topology on FL inducing sSet

A sieve $S \subseteq Y_{FL}(L)$ covers L iff $i^*S = i^*Y_{FL}(L) = Nv(L)$ iff S contains all chains in L, i.e. all monotone maps $[n] \to L$. There is a minimal covering sieve C_L consisting of all maps to L whose image is linearly ordered.

The corresponding **closure operator** $j: \Omega \to \Omega$ sends $S \subseteq Y_{FL}(L)$ to the set of all $u: K \to L$ with $uc \in S$ for all chains $c: [n] \to K$.

Cisinski Model Structures on **cSet** and **sSet** (1)

For Cisinski model structures on presheaf toposes $\widehat{\mathbb{C}}$ its class of **cofibrations** consists of all monos.

Its class of trivial fibrations consists of maps weakly right orthogonal to all monos.

A naive fibration is a map weakly right orthogonal to all cylinders, i.e. monos of the form

$$(\{\varepsilon\} \times X) \cup (\mathbb{I} \times Y) \hookrightarrow \mathbb{I} \times X$$

where $Y \subseteq X$, $\varepsilon \in \{0,1\} \subseteq \mathbb{I} = Y(2)$.

The **trivial cofibrations** are the maps weakly left orthogonal to all naive fibrations.

On **sSet** this construction gives the classical model structure and on **cSet** the "type-theoretic" one of [CCHM].

Cisinski Model Structures on **cSet** and **sSet** (2)

Since i^* preserves \mathbb{I} and finite limits and it retracts monos of **cSet** onto monos of **sSet** it follows that i^* retracts cylinders in **sSet** onto cylinders in **sSet**.

Thus i_*p is a fibration in **cSet** iff p is a fibration in **sSet**.

Accordingly, we have $\mathcal{F}_{sSet} = sSet \cap \mathcal{F}_{cSet}$.

Thus $i^* \dashv i_*$ is a Quillen pair.

We don't know whether it is a Quillen equivalence.

But presumably not!

Sattler's Theorem

The functor i_{\parallel} preserves monos, i.e. cofibrations, and also trivial cofibrations.

Thus $i_! \dashv i^*$ is also a Quillen pair.

But we also do not know whether it is a Quillen equivalence, i.e. whether all counits $\varepsilon_X: i_! i^* X \to X$ are weak equivalences w.r.t. the "type-theoretic" model structure on **cSet**.

i_st preserves and reflects "equality" of fibrant objects

Theorem If A and B are fibrant in **sSet**, i.e. Kan complexes, a map $f: A \rightarrow B$ is a weak equivalence in **sSet** iff it is a weak equivalence in **cSet**.

Proof.

```
One can show that i_*(\mathsf{hfiber}(f)) \simeq \mathsf{hfiber}(i_*f) and thus \forall m \in \mathsf{Mono}(\mathbf{cSet})(m \perp \mathsf{hfiber}(i_*f)) iff \forall m \in \mathsf{Mono}(\mathbf{cSet})(m \perp i_*(\mathsf{hfiber}(f))) iff \forall m \in \mathsf{Mono}(\mathbf{cSet})(i^*m \perp \mathsf{hfiber}(f)) iff \forall m \in \mathsf{Mono}(\mathbf{cSet})(m \perp \mathsf{hfiber}(f)) i.e. i_*f is a weak equivalence in i_*f in i_*f in i_*f is a weak equivalence in i_*f in i_*f
```

¹since the monos in **sSet** are precisely the sheafifications of monos in **cSet**²as shown by Voevodsky for fibrant objects A and B a map $w:A \to B$ is a weak equivalence iff hfiber(w) is a trivial cofibrations, i.e. $m \perp$ hfiber(w) for all monos m

Universes in **cSet** and **sSet** (1)

In both **cSet** and **sSet** we may construct universes

$$\pi_c: E_c \to U_c$$
 and $\pi_s: E_s \to U_s$

generic for small fibrations.

In both cases the universes are fibrant and univalent!

However, in case of **sSet** this requires heavy choice (due to use of minimal fibrations!) but not so for **cSet**.

Thus, we have

and $pe \sim \mathrm{id}_{U_s}$ (i.e. pe and id_{U_s} are homotopy equivalent) since the universe π_s is univalent.

Universes in **cSet** and **sSet** (2)

Since i_* preserves fibrations, pullbacks and \sim for maps between fibrant objects we have

$$i_*E_s \longrightarrow i_*i^*E_c \longrightarrow i_*E_s$$

$$i_*\pi_s \downarrow \qquad \downarrow i_*i^*\pi_c \downarrow \qquad \downarrow i_*\pi_s$$

$$i_*U_s \longrightarrow i_*e \qquad i_*i^*U_c \longrightarrow i_*D \qquad \downarrow i_*U_s$$

with $i_*p \circ i_*e = i_*(p \circ e) \sim i_*(\mathrm{id}_{U_s}) = \mathrm{id}_{i_*U_s}$. Thus $i_*i^*\pi_c$ is generic for small fibrations which are families of sheaves and $i_*\pi_s$ is a univalent such universe.

Thus, pulling back $i_*i^*\pi_c$ along the homotopy equalizer of $i_*e \circ i_*p$ and $\mathrm{id}_{i_*i^*U_c}$ gives rise to a univalent universe U_{cs} in **cSet** which is weakly generic for small fibrations which are families of sheaves.

Conclusion and Outlook

- We have shown that simplicial sets form a(n essential) subtopos of cubical sets.
- Moreover, sSet is a submodel of cSet since the inclusion
 i_{*}: sSet → cSet preserves Σ and Π and also the interval I and thus also identity types.
- In **cSet** we have constructed a fibrant univalent universe generic for small fibrations of sheaves.

Thus, we conclude that

the simplical model lives within the cubical model!

