

Joint work with Chuangjie Xu and Nicolai Kraus

Foundations and Applications of Univalent Mathematics Herrsching, 20 December 2019

Definition

A set α is an ordinal if it is transitive and \in is well-founded on α :

- \triangleright $x \in \alpha \rightarrow x \subseteq \alpha$,
- ▶ Every nonempty $X \subseteq \alpha$ has an \in -least element.

(Obviously too strong constructively!)

Definition

A set α is an ordinal if it is transitive and \in is well-founded on α :

- \triangleright $x \in \alpha \rightarrow x \subseteq \alpha$,
- ▶ Every nonempty $X \subseteq \alpha$ has an \in -least element.

(Obviously too strong constructively!)

This makes \in a strict total order on α ; we often write < for \in .

Definition

A set α is an ordinal if it is transitive and \in is well-founded on α :

- \triangleright $x \in \alpha \rightarrow x \subseteq \alpha$,
- ▶ Every nonempty $X \subseteq \alpha$ has an \in -least element.

(Obviously too strong constructively!)

This makes \in a strict total order on α ; we often write < for \in .

Important property: there cannot be an infinitely descending sequence of ordinals

$$\alpha_0 > \alpha_1 > \alpha_2 > \dots$$

Definition

A set α is an ordinal if it is transitive and \in is well-founded on α :

- $x \in \alpha \rightarrow x \subseteq \alpha$,
- ▶ Every nonempty $X \subseteq \alpha$ has an \in -least element.

(Obviously too strong constructively!)

This makes \in a strict total order on α ; we often write < for \in .

Important property: there cannot be an infinitely descending sequence of ordinals

$$\alpha_0 > \alpha_1 > \alpha_2 > \dots$$

E.g. already Turing [1949] used ordinals to prove termination of programs.

 $ightharpoonup 0 = \emptyset$ is an ordinal;

- $ightharpoonup 0 = \emptyset$ is an ordinal;
- $\blacktriangleright \ 1 = 0 \cup \{0\} \text{ is an ordinal;}$

- $ightharpoonup 0 = \emptyset$ is an ordinal;
- ▶ $1 = 0 \cup \{0\}$ is an ordinal;
- ▶ $2 = 1 \cup \{1\}$ is an ordinal (classically);

- $ightharpoonup 0 = \emptyset$ is an ordinal;
- ▶ $1 = 0 \cup \{0\}$ is an ordinal;
- ▶ $2 = 1 \cup \{1\}$ is an ordinal (classically);
- ▶ 3, 4, 5, ... are ordinals.

- $ightharpoonup 0 = \emptyset$ is an ordinal;
- ▶ $1 = 0 \cup \{0\}$ is an ordinal;
- ▶ $2 = 1 \cup \{1\}$ is an ordinal (classically);
- ▶ 3, 4, 5, ... are ordinals.
- $\triangleright \ \omega = \bigcup_{n \in \mathbb{N}} n$ is an ordinal.

- $ightharpoonup 0 = \emptyset$ is an ordinal;
- ▶ $1 = 0 \cup \{0\}$ is an ordinal;
- $\blacktriangleright \ 2 = 1 \cup \{1\} \text{ is an ordinal (classically);}$
- ▶ 3, 4, 5, ... are ordinals.
- $\triangleright \ \omega = \bigcup_{n \in \mathbb{N}} n$ is an ordinal.
- $\blacktriangleright \ \omega + 1 = \omega \cup \{\omega\} \text{ is an ordinal;}$

- $ightharpoonup 0 = \emptyset$ is an ordinal;
- ▶ $1 = 0 \cup \{0\}$ is an ordinal;
- ▶ $2 = 1 \cup \{1\}$ is an ordinal (classically);
- ▶ 3, 4, 5, ... are ordinals.
- $\triangleright \ \omega = \bigcup_{n \in \mathbb{N}} n$ is an ordinal.
- $ightharpoonup \omega + 1 = \omega \cup \{\omega\}$ is an ordinal;
- \triangleright $\omega + 2$, $\omega + 3$, ... are ordinals;

- $ightharpoonup 0 = \emptyset$ is an ordinal;
- ▶ $1 = 0 \cup \{0\}$ is an ordinal;
- ▶ $2 = 1 \cup \{1\}$ is an ordinal (classically);
- ▶ 3, 4, 5, ... are ordinals.
- $\triangleright \ \omega = \bigcup_{n \in \mathbb{N}} n$ is an ordinal.
- $ightharpoonup \omega + 1 = \omega \cup \{\omega\}$ is an ordinal;
- \triangleright $\omega + 2$, $\omega + 3$, ... are ordinals;
- $\blacktriangleright \ \omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.

 $\blacktriangleright \ \omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.

- $\blacktriangleright \ \omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.
- \blacktriangleright $\omega \cdot 2$, $\omega \cdot 3$, ... are ordinals;

- $\blacktriangleright \ \omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.
- \triangleright $\omega \cdot 2$, $\omega \cdot 3$, ... are ordinals;
- u $\omega^2 = \omega \cdot \omega = \bigcup_{n < \omega} (\omega \cdot n)$ is an ordinal.

- $\omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.
- \triangleright $\omega \cdot 2$, $\omega \cdot 3$, ... are ordinals;
- u $\omega^2 = \omega \cdot \omega = \bigcup_{n < \omega} (\omega \cdot n)$ is an ordinal.
- \blacktriangleright $\omega^2 \cdot 2$, $\omega^2 \cdot 3$, ... are ordinals;

- $\blacktriangleright \ \omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.
- \triangleright $\omega \cdot 2$, $\omega \cdot 3$, ... are ordinals;
- $ightharpoonup \omega^2 = \omega \cdot \omega = \bigcup_{n < \omega} (\omega \cdot n)$ is an ordinal.
- \triangleright $\omega^2 \cdot 2$, $\omega^2 \cdot 3$, ... are ordinals;
- $\blacktriangleright \ \omega^3 = \bigcup_{n < \omega} (\omega^2 \cdot n)$ is an ordinal.

- $\omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.
- \triangleright $\omega \cdot 2$, $\omega \cdot 3$, ... are ordinals;
- $ightharpoonup \omega^2 = \omega \cdot \omega = \bigcup_{n < \omega} (\omega \cdot n)$ is an ordinal.
- \triangleright $\omega^2 \cdot 2$, $\omega^2 \cdot 3$, ... are ordinals;
- $\blacktriangleright \ \omega^3 = \bigcup_{n < \omega} (\omega^2 \cdot n)$ is an ordinal.
- \blacktriangleright ω^4 , ω^5 , ... are ordinals;

- $\omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.
- \triangleright $\omega \cdot 2$, $\omega \cdot 3$, ... are ordinals;
- $\blacktriangleright \ \omega^2 = \omega \cdot \omega = \bigcup_{n < \omega} (\omega \cdot n)$ is an ordinal.
- \blacktriangleright $\omega^2 \cdot 2$, $\omega^2 \cdot 3$, ... are ordinals;
- $\blacktriangleright \ \omega^3 = \bigcup_{n < \omega} (\omega^2 \cdot n)$ is an ordinal.
- $\blacktriangleright \omega^4, \omega^5, \dots$ are ordinals;
- $\blacktriangleright \ \omega^{\omega} = \bigcup_{n < \omega} \omega^n$ is an ordinal.

- $\omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.
- \triangleright $\omega \cdot 2$, $\omega \cdot 3$, ... are ordinals;
- $\blacktriangleright \ \omega^2 = \omega \cdot \omega = \bigcup_{n < \omega} (\omega \cdot n)$ is an ordinal.
- \triangleright $\omega^2 \cdot 2$, $\omega^2 \cdot 3$, ... are ordinals;
- $\blacktriangleright \ \omega^3 = \bigcup_{n < \omega} (\omega^2 \cdot n)$ is an ordinal.
- \triangleright ω^4 , ω^5 , ... are ordinals;
- $\blacktriangleright \ \omega^{\omega} = \bigcup_{n < \omega} \omega^n$ is an ordinal.
- $\blacktriangleright \omega^{\omega}, \, \omega^{\omega^{\omega}}, \, \dots$ are ordinals;

- $\blacktriangleright \ \omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.
- $\triangleright \omega \cdot 2, \omega \cdot 3, \dots$ are ordinals;
- $\blacktriangleright \ \omega^2 = \omega \cdot \omega = \bigcup_{n < \omega} (\omega \cdot n)$ is an ordinal.
- \triangleright $\omega^2 \cdot 2$, $\omega^2 \cdot 3$, ... are ordinals;
- $\blacktriangleright \ \omega^3 = \bigcup_{n < \omega} (\omega^2 \cdot n)$ is an ordinal.
- \blacktriangleright ω^4 , ω^5 , ... are ordinals;
- $\blacktriangleright \ \omega^{\omega} = \bigcup_{n < \omega} \omega^n$ is an ordinal.
- $\blacktriangleright \omega^{\omega}, \omega^{\omega^{\omega}}, \dots$ are ordinals;
- $\blacktriangleright \bigcup \{\omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \ldots\}$ is an ordinal.

- $\blacktriangleright \ \omega \cdot 2 = \bigcup_{n < \omega} (\omega + n)$ is an ordinal.
- \triangleright $\omega \cdot 2$, $\omega \cdot 3$, ... are ordinals;
- $\blacktriangleright \omega^2 = \omega \cdot \omega = \bigcup_{n < \omega} (\omega \cdot n)$ is an ordinal.
- \triangleright $\omega^2 \cdot 2$, $\omega^2 \cdot 3$, ... are ordinals;
- $\blacktriangleright \ \omega^3 = \bigcup_{n < \omega} (\omega^2 \cdot n)$ is an ordinal.
- $\blacktriangleright \omega^4$, ω^5 , ... are ordinals;
- $\blacktriangleright \ \omega^{\omega} = \bigcup_{n < \omega} \omega^n$ is an ordinal.
- $\blacktriangleright \omega^{\omega}, \omega^{\omega^{\omega}}, \dots$ are ordinals;
- $ightharpoonup \varepsilon_0 = \bigcup \{\omega^{\omega}, \omega^{\omega^{\omega}}, \omega^{\omega^{\omega^{\omega}}}, \ldots\}$ is an ordinal.

Fact (Cantor Normal Form)

Every ordinal α can be written uniquely as

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$$

for some $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$.

Fact (Cantor Normal Form)

Every ordinal α can be written uniquely as

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$$

for some $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$.

In particular, $\varepsilon_0=\omega^{\varepsilon_0}$, so we can take $\beta_1=\varepsilon_0$.

Fact (Cantor Normal Form)

Every ordinal α can be written uniquely as

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$$

for some $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$.

In particular, $\varepsilon_0 = \omega^{\varepsilon_0}$, so we can take $\beta_1 = \varepsilon_0$.

But, for $\alpha < \varepsilon_0$, we have $\beta_i < \alpha$ for every *i*.

Fact (Cantor Normal Form)

Every ordinal α can be written uniquely as

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$$

for some $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$.

In particular, $\varepsilon_0 = \omega^{\varepsilon_0}$, so we can take $\beta_1 = \varepsilon_0$.

But, for $\alpha < \varepsilon_0$, we have $\beta_i < \alpha$ for every *i*.

Hence if we compute the Cantor Normal Form

$$\beta_i = \omega^{\gamma_1} + \omega^{\gamma_2} + \dots + \omega^{\gamma_m}$$

and so on, we get decreasing sequences

$$\alpha > \beta_i > \gamma_i > \dots$$

which must terminate.

Fact (Cantor Normal Form)

Every ordinal α can be written uniquely as

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$$

for some $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_n$.

In particular, $\varepsilon_0 = \omega^{\varepsilon_0}$, so we can take $\beta_1 = \varepsilon_0$.

But, for $\alpha < \varepsilon_0$, we have $\beta_i < \alpha$ for every *i*.

Hence if we compute the Cantor Normal Form

$$\beta_i = \omega^{\gamma_1} + \omega^{\gamma_2} + \dots + \omega^{\gamma_m}$$

and so on, we get decreasing sequences

$$\alpha > \beta_i > \gamma_i > \dots$$

which must terminate. This gives a finite representation of $\alpha!$

Ordinal notation systems for ordinals below $arepsilon_0$

Cantor Normal Form gives a finite and simple notation for ordinals α below ε_0 :

Ordinal notation systems for ordinals below ε_0

Cantor Normal Form gives a finite and simple notation for ordinals α below ε_0 :

 $ightharpoonup \alpha$ is either 0, or

Ordinal notation systems for ordinals below $arepsilon_0$

Cantor Normal Form gives a finite and simple notation for ordinals α below ε_0 :

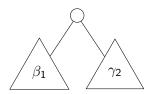
- $ightharpoonup \alpha$ is either 0, or
- represented by two ordinals $\alpha = \omega^{\beta_1} + \gamma_2$.

Ordinal notation systems for ordinals below $arepsilon_0$

Cantor Normal Form gives a finite and simple notation for ordinals α below ε_0 :

- $ightharpoonup \alpha$ is either 0, or
- represented by two ordinals $\alpha = \omega^{\beta_1} + \gamma_2$.

Simply binary trees!

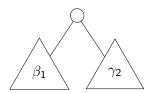


Ordinal notation systems for ordinals below ε_0

Cantor Normal Form gives a finite and simple notation for ordinals α below ε_0 :

- $ightharpoonup \alpha$ is either 0, or
- represented by two ordinals $\alpha = \omega^{\beta_1} + \gamma_2$.

Simply binary trees!



But: uniqueness of representation has been lost. How can we recover this?

An inductive-inductive-recursive definition

We simultaneously define

```
data MutualOrd : Type_0 data \_<\_ : MutualOrd \to MutualOrd \to Type_0 fst : MutualOrd \to MutualOrd
```

data MutualOrd where

0: MutualOrd

 $\omega \, \hat{\ } _+_[_] : \big(a \; b : \; \mathsf{MutualOrd} \big) \to a \geq \mathsf{fst} \; b \to \mathsf{MutualOrd}$

data MutualOrd where

0: MutualOrd

$$\omega \, \hat{\ } _+_[_] : \big(a \; b : \; \mathsf{MutualOrd} \big) \to a \geq \mathsf{fst} \; b \to \mathsf{MutualOrd}$$

where $a \ge b = a > b \uplus a \equiv b$.

data MutualOrd where

0: MutualOrd

$$\omega^{\, \smallfrown} _+_[\, _] : (\textit{a} \; \textit{b} : \, \mathsf{MutualOrd}) \to \textit{a} \geq \mathsf{fst} \; \textit{b} \to \mathsf{MutualOrd}$$

where $a \ge b = a > b \uplus a \equiv b$.

data _ < _ where

$$<_1 : 0 < \omega^{\hat{}} a + b[r]$$

$$<_2 : a < c \to \omega^{\hat{}} a + b[r] < \omega^{\hat{}} c + d[s]$$

$$<_3: a \equiv c \rightarrow b < d \rightarrow \omega^{\hat{}} \ a + b \ [r] < \omega^{\hat{}} \ c + d \ [s]$$

data MutualOrd where

0: MutualOrd

$$\omega^{\, \smallfrown} _+_[\, _] : \, (\textit{a} \, \, \textit{b} : \, \mathsf{MutualOrd}) \, \rightarrow \, \textit{a} \, \geq \, \mathsf{fst} \, \, \textit{b} \, \rightarrow \, \mathsf{MutualOrd}$$

where $a \ge b = a > b \uplus a \equiv b$.

data _<_ where

$$<_1 : 0 < \omega^{\hat{}} \ a + b [r]$$

$$<_2 : a < c \to \omega^{\hat{}} \ a + b [r] < \omega^{\hat{}} \ c + d [s]$$

$$<_3: a \equiv c \rightarrow b < d \rightarrow \omega^{\hat{}} a + b[r] < \omega^{\hat{}} c + d[s]$$

$$\begin{array}{l} \text{fst } 0 = 0 \\ \text{fst } (\omega^{\hat{}} \ a + _ \left[\begin{array}{c} _ \end{array} \right]) = a \end{array}$$

data MutualOrd where

0 : MutualOrd

$$\omega ^{ ^{ }}_{+_[_]}: \, (\textit{a} \, \textit{b}: \, \mathsf{MutualOrd}) \rightarrow \textit{a} \geq \mathsf{fst} \, \textit{b} \rightarrow \mathsf{MutualOrd}$$

where $a \ge b = a > b \uplus a \equiv b$.

data _ < _ where
<1: 0 <
$$\omega$$
^ a + b [r]
<2: a < c \rightarrow ω ^ a + b [r] < ω ^ c + d [s]
<3: a \equiv c \rightarrow b < d \rightarrow ω ^ a + b [r] < ω ^ c + d [s]

fst
$$0 = 0$$

fst $(\omega^{a} + []) = a$

Remark: there is an equivalent non-inductive-recursive definition where we define the graph of fst inductively.

Examples

- ▶ $1 = \omega^{\circ} 0 + 0$ [inj₂ refl]
- $\blacktriangleright \omega^{\wedge}\langle a \rangle = \omega^{\wedge} a + 0 [\geq 0]$

Basic properties

Proposition

< is proof-irrelevant.</pre>

Basic properties

Proposition

_ <_ is proof-irrelevant.</pre>

Proof.

We simultaneously define

```
MutualOrdIsSet: isSet MutualOrd 
 <IsPropValued: isProp (a < b)
MutualOrd^{=}: \{r: a \ge \text{fst } b\} \{s: c \ge \text{fst } d\} \rightarrow a \equiv c \rightarrow b \equiv d \rightarrow \omega^{a} + b [r] \equiv \omega^{c} + d [s]
```

ç

Basic properties

Proposition

_ <_ is proof-irrelevant.</pre>

Proof.

We simultaneously define

MutualOrdIsSet: isSet MutualOrd

<IsPropValued : isProp (a < b)

MutualOrd⁼ : $\{r: a \ge \text{fst } b\} \{s: c \ge \text{fst } d\} \rightarrow a \equiv c \rightarrow b \equiv d \rightarrow \omega^{\hat{}} a + b [r] \equiv \omega^{\hat{}} c + d [s]$

$$\rightarrow \omega^{\hat{}} a + b [r] \equiv \omega^{\hat{}} c + d [s]$$

Proposition

< is trichotomous.

Proof.

We define

$$<$$
-tri : $(a \ b : MutualOrd) \rightarrow a < b \uplus a \ge b$

using case distinctions on all subterms.

Addition on ordinals is famously non-commutative

Addition on ordinals is famously non-commutative:

$$1+\omega=\omega$$

Addition on ordinals is famously non-commutative:

$$1+\omega=\omega<\omega+1$$

Addition on ordinals is famously non-commutative:

$$1 + \omega = \omega < \omega + 1$$

In general, if $\gamma < \omega^{\beta}$ then $\gamma + \omega^{\beta} = \omega^{\beta}$.

Addition on ordinals is famously non-commutative:

$$1 + \omega = \omega < \omega + 1$$

In general, if $\gamma < \omega^{\beta}$ then $\gamma + \omega^{\beta} = \omega^{\beta}$.

In particular, if $\alpha<\beta$ then $\omega^{\alpha}<\omega^{\beta}$, hence $\omega^{\alpha}+\omega^{\beta}=\omega^{\beta}$.

Addition on ordinals is famously non-commutative:

$$1 + \omega = \omega < \omega + 1$$

In general, if $\gamma < \omega^{\beta}$ then $\gamma + \omega^{\beta} = \omega^{\beta}$.

In particular, if $\alpha < \beta$ then $\omega^{\alpha} < \omega^{\beta}$, hence $\omega^{\alpha} + \omega^{\beta} = \omega^{\beta}$.

We now want to implement addition on MutualOrd. We simultaneously define

 $_+_: \mathsf{MutualOrd} o \mathsf{MutualOrd} o \mathsf{MutualOrd} \\ \ge \mathsf{fst} + : \{a : \mathsf{MutualOrd}\} \ (b \ c : \mathsf{MutualOrd}) \\ o a \ge \mathsf{fst} \ b o a \ge \mathsf{fst} \ c o a \ge \mathsf{fst} \ (b + c)$

Addition on MutualOrd

Remember: if $\alpha < \beta$ then $\omega^{\alpha} + \omega^{\beta} = \omega^{\beta}$.

Addition on MutualOrd

Addition on MutualOrd

```
Remember: if \alpha < \beta then \omega^{\alpha} + \omega^{\beta} = \omega^{\beta}.
     0 + b = b
     a + 0 = a
     (\omega^{\circ} a + c[r]) + (\omega^{\circ} b + d[s]) with <-tri a b
     ... | ini_1 a < b = \omega^b + d[s]
     ... |\inf_2 a \ge b = \omega^a + (c + \omega^b + d[s]) [\ge fst + c \quad ra \ge b]
     >fst+ 0 r s = s
     \geqfst+ (\omega^ + []) 0 rs = r
     \geqfst+ (\omega^ b + [ ]) (\omega^ c + [ ]) r s with <-tri b c
     ... | inj<sub>1</sub> b < c = s
     ... | ini<sub>2</sub> b > c = r
```

Multiplication on MutualOrd

```
 \begin{array}{l} -\cdot\_: \ \mathsf{MutualOrd} \to \mathsf{MutualOrd} \to \mathsf{MutualOrd} \\ 0 \cdot b = 0 \\ a \cdot 0 = 0 \\ a \cdot (\omega^{\smallfrown} 0 + d \, [ \, r \, ]) = a + a \cdot d \\ (\omega^{\smallfrown} a + c \, [ \, r \, ]) \cdot (\omega^{\smallfrown} b + d \, [ \, s \, ]) = \\ \mathsf{M.}\omega^{\smallfrown} \langle \ a + b \ \rangle + (\omega^{\smallfrown} \ a + c \, [ \, r \, ] \cdot d) \end{array}
```

Multiplication on MutualOrd

$$\begin{array}{l} -\cdot_: \ \mathsf{MutualOrd} \to \mathsf{MutualOrd} \to \mathsf{MutualOrd} \\ 0 \cdot b = 0 \\ a \cdot 0 = 0 \\ a \cdot (\omega^{\smallfrown} 0 + d \, [\, r \,]) = a + a \cdot d \\ (\omega^{\smallfrown} a + c \, [\, r \,]) \cdot (\omega^{\smallfrown} b + d \, [\, s \,]) = \\ \mathsf{M.}\omega^{\smallfrown} \langle \ a + b \ \rangle + (\omega^{\smallfrown} a + c \, [\, r \,] \cdot d) \end{array}$$

Note: All in terms of previous operations, so no simultaneous lemma needed.

We want to avoid redundant representations of ordinals

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$$

We want to avoid redundant representations of ordinals

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$$

With a mutual approach, we could require $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_n$, hence ensuring uniqueness of the list $[\beta_1, \ldots, \beta_n]$.

We want to avoid redundant representations of ordinals

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$$

With a mutual approach, we could require $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_n$, hence ensuring uniqueness of the list $[\beta_1, \ldots, \beta_n]$.

Another option: quotient out the difference by identifying different permutations of the exponents

$$\omega^{\beta_1} + \omega^{\beta_2} \equiv \omega^{\beta_2} + \omega^{\beta_1}$$

We want to avoid redundant representations of ordinals

$$\alpha = \omega^{\beta_1} + \omega^{\beta_2} + \dots + \omega^{\beta_n}$$

With a mutual approach, we could require $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_n$, hence ensuring uniqueness of the list $[\beta_1, \ldots, \beta_n]$.

Another option: quotient out the difference by identifying different permutations of the exponents

$$\omega^{\beta_1} + \omega^{\beta_2} \equiv \omega^{\beta_2} + \omega^{\beta_1}$$

That is, we use a quotient inductive type.

A higher inductive appoach

```
data HITOrd : Type<sub>0</sub> where \begin{array}{c} \textbf{0}: \ \textbf{HITOrd} \\ \omega ^- \oplus _- : \ \textbf{HITOrd} \to \ \textbf{HITOrd} \to \ \textbf{HITOrd} \\ \text{swap}: \ \forall \ a \ b \ c \to \omega ^ \ a \oplus \omega ^ \ b \oplus c \equiv \omega ^ \ b \oplus \omega ^ \ a \oplus c \\ \text{trunc}: \ \textbf{isSet} \ \textbf{HITOrd} \\ \end{array} (cf. finite multisets as a HIT [Licata, 2014]).
```

Example

```
example : (a\ b\ c: \mathsf{HITOrd})
\rightarrow \omega^{\land}\ a \oplus \omega^{\land}\ b \oplus \omega^{\land}\ c \oplus 0 \equiv \omega^{\land}\ c \oplus \omega^{\land}\ b \oplus \omega^{\land}\ a \oplus 0
example a\ b\ c = \mathsf{begin}
\omega^{\land}\ a \oplus \omega^{\land}\ b \oplus \omega^{\land}\ c \oplus 0 \equiv \langle \mathsf{swap}\ a\ b \_ \rangle
\omega^{\land}\ b \oplus \omega^{\land}\ a \oplus \omega^{\land}\ c \oplus 0 \equiv \langle \mathsf{cong}\ (\omega^{\land}\ b \oplus \_)\ (\mathsf{swap}\ a\ c \_)\ \rangle
\omega^{\land}\ b \oplus \omega^{\land}\ c \oplus \omega^{\land}\ a \oplus 0 \equiv \langle \mathsf{swap}\ b\ c \_ \rangle
\omega^{\land}\ c \oplus \omega^{\land}\ b \oplus \omega^{\land}\ a \oplus 0 \Box
```

Arithmetic on HITOrd

Because every function out of HITOrd must respect swap, it is convenient to define **commutative** operations on HITOrd.

Arithmetic on HITOrd

Because every function out of HITOrd must respect swap, it is convenient to define **commutative** operations on HITOrd.

For arithmetic, these are the so-called Hessenberg sum and product [Hessenberg, 1906].

Hessenberg sum

```
\begin{array}{ll} \oplus \_ : \mathsf{HITOrd} \to \mathsf{HITOrd} \to \mathsf{HITOrd} \\ 0 & \oplus y = y \\ (\omega^{\hat{}} \ a \oplus b) & \oplus y = \omega^{\hat{}} \ a \oplus (b \oplus y) \\ (\mathsf{swap} \ a \ b \ c \ i) \oplus y = \mathsf{swap} \ a \ b \ (c \oplus y) \ i \\ (\mathsf{trunc} \ p \ q \ i \ j) \oplus y = \mathsf{trunc} \ (\mathsf{cong} \ (\_ \oplus y) \ p) \ (\mathsf{cong} \ (\_ \oplus y) \ q) \ i \ j \end{array}
```

Hessenberg sum

In the swap case, we have to construct a path

$$\omega^{\wedge} a \oplus \omega^{\wedge} b \oplus (c \oplus y) \equiv \omega^{\wedge} b \oplus \omega^{\wedge} a \oplus (c \oplus y)$$

Hessenberg sum

In the swap case, we have to construct a path

$$\omega^{\wedge} a \oplus \omega^{\wedge} b \oplus (c \oplus y) \equiv \omega^{\wedge} b \oplus \omega^{\wedge} a \oplus (c \oplus y)$$

Proposition

 $_\oplus_$ is commutative.

Which approach is better?

Which approach is better?

Both!

Which approach is better?

Both!

Depending on the application, e.g. the mutual approach for properties of the order, the HIT approach for commutative operations.

Which approach is better?

Both!

Depending on the application, e.g. the mutual approach for properties of the order, the HIT approach for commutative operations.

Even better:

Theorem

MutualOrd and HITOrd are equivalent, i.e. there is a proof $M \simeq H$: MutualOrd $\simeq HITOrd$.

Which approach is better?

Both!

Depending on the application, e.g. the mutual approach for properties of the order, the HIT approach for commutative operations.

Even better:

Theorem

MutualOrd and HITOrd are equivalent, i.e. there is a proof $M \simeq H$: MutualOrd $\simeq HITOrd$.

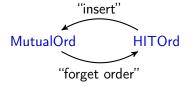
Corollary

MutualOrd and HITOrd are identical, i.e. there is a proof $M\equiv H$: MutualOrd \equiv HITOrd.

MutualOrd and HITOrd are equivalent

MutualOrd and HITOrd are equivalent

MutualOrd and HITOrd are equivalent



Operations via univalence

By using univalence, we can transport operations and proofs between MutualOrd and HITOrd.

Operations via univalence

By using univalence, we can transport operations and proofs between MutualOrd and HITOrd.

```
\_<^{\mathsf{H}}_-: \mathsf{HITOrd} \to \mathsf{HITOrd} \to \mathsf{Type_0}
\_<^{\mathsf{H}}_-=\mathsf{transport} \ (\lambda \ i \to \mathsf{M} \equiv \mathsf{H} \ i \to \mathsf{M} \equiv \mathsf{H} \ i \to \mathsf{Type_0}) \ \_<\_
```

Operations via univalence

By using univalence, we can transport operations and proofs between MutualOrd and HITOrd.

$$_<^{\mathsf{H}}_: \mathsf{HITOrd} \to \mathsf{HITOrd} \to \mathsf{Type_0}$$

 $_<^{\mathsf{H}}_= \mathsf{transport} \ (\lambda \ i \to \mathsf{M} \equiv \mathsf{H} \ i \to \mathsf{M} \equiv \mathsf{H} \ i \to \mathsf{Type_0}) \ _<_$

$$_ \oplus^{\mathsf{M}} _ : \mathsf{MutualOrd} \to \mathsf{MutualOrd}$$

$$_ \oplus^{\mathsf{M}} _ = \mathsf{transport} \ (\lambda \ i \to \mathsf{H} \equiv \mathsf{M} \ i \to \mathsf{H} \equiv \mathsf{M} \ i \to \mathsf{H} \equiv \mathsf{M} \ i) \ _ \oplus _$$

Transporting proofs

We can also transport properties. For instance: define

Dec :
$$(A : \mathsf{Type}\ \ell) \to (A \to A \to \mathsf{Type}\ \ell') \to \mathsf{Type}\ (\ell \sqcup \ell')$$

Dec $A _<_ = (x\ y : A) \to x < y \uplus \neg x < y$

Transporting proofs

We can also transport properties. For instance: define

Dec :
$$(A : \mathsf{Type}\ \ell) \to (A \to A \to \mathsf{Type}\ \ell') \to \mathsf{Type}\ (\ell \sqcup \ell')$$

Dec $A \mathrel{\underline{\hspace{1cm}}} < \mathrel{\underline{\hspace{1cm}}} = (x\ y : A) \to x < y \uplus \neg x < y$

We can easily prove

Transporting proofs

We can also transport properties. For instance: define

Dec :
$$(A : \mathsf{Type}\ \ell) \to (A \to A \to \mathsf{Type}\ \ell') \to \mathsf{Type}\ (\ell \sqcup \ell')$$

Dec $A \mathrel{\underline{\hspace{1cm}}} < \mathrel{\underline{\hspace{1cm}}} = (x\ y : A) \to x < y \uplus \neg x < y$

We can easily prove

Hence we can construct

\lambda
$$i \rightarrow$$
 Dec (M \equiv H i) (i)) <-dec

where

\lambda
$$i \rightarrow M \equiv H$$
 $i \rightarrow M \equiv H$ $i \rightarrow Type_0$) _<_ _

It computes!

Define

$$\begin{array}{c} \text{It} : \mathsf{HITOrd} \to \mathsf{HITOrd} \to \mathsf{Bool} \\ \text{It} \ a \ b = \mathsf{isLeft} \ (<^\mathsf{H}\text{-dec} \ a \ b) \end{array}$$
 for convenience.

It computes!

```
Define
```

```
It : HITOrd \rightarrow HITOrd \rightarrow Bool It a \ b = \text{isLeft} \ (<^{\text{H}}\text{-dec} \ a \ b) for convenience.
```

```
\begin{split} &\text{Ex}[<^{\text{H}}\text{-decComp}]:\\ &\text{It } \textbf{0} \textbf{ 0} \equiv \text{false}\\ &\times \text{It } \textbf{H.} \boldsymbol{\omega} \ ((\textbf{H.} \textbf{1} \oplus \textbf{H.} \textbf{1}) \otimes \textbf{H.} \boldsymbol{\omega}) \equiv \text{true}\\ &\times \text{It } (\textbf{H.} \boldsymbol{\omega} \! \wedge \! \langle \ \textbf{H.} \boldsymbol{\omega} \ \rangle) \ (\textbf{H.} \boldsymbol{\omega} \! \wedge \! \langle \ \textbf{H.} \textbf{1} \ +^{\text{H}} \ \textbf{H.} \boldsymbol{\omega} \ \rangle) \equiv \text{false}\\ &\times \text{It } (\textbf{H.} \boldsymbol{\omega} \! \wedge \! \langle \ \textbf{H.} \boldsymbol{\omega} \ \rangle) \ (\textbf{H.} \boldsymbol{\omega} \! \wedge \! \langle \ \textbf{H.} \textbf{1} \oplus \textbf{H.} \boldsymbol{\omega} \ \rangle) \equiv \text{true}\\ &\text{Ex}[<^{\text{H}}\text{-decComp}] = (\text{refl} \ , \ \text{refl} \ , \ \text{refl}) \end{split}
```

It computes!

```
Define
```

```
It : HITOrd \rightarrow HITOrd \rightarrow Bool It a \ b = \text{isLeft} \ (<^{\text{H}}\text{-dec} \ a \ b)
```

for convenience.

$$\begin{split} &\text{Ex}[<^{\text{H}}\text{-decComp}]:\\ &\text{It } \textbf{0} \textbf{ 0} \equiv \text{false}\\ &\times \text{ It } \textbf{H.} \boldsymbol{\omega} \ ((\textbf{H.} \textbf{1} \oplus \textbf{H.} \textbf{1}) \otimes \textbf{H.} \boldsymbol{\omega}) \equiv \text{true}\\ &\times \text{ It } (\textbf{H.} \boldsymbol{\omega} \wedge \langle \textbf{H.} \boldsymbol{\omega} \rangle) \ (\textbf{H.} \boldsymbol{\omega} \wedge \langle \textbf{H.} \textbf{1} +^{\text{H}} \textbf{H.} \boldsymbol{\omega} \rangle) \equiv \text{false}\\ &\times \text{ It } (\textbf{H.} \boldsymbol{\omega} \wedge \langle \textbf{H.} \boldsymbol{\omega} \rangle) \ (\textbf{H.} \boldsymbol{\omega} \wedge \langle \textbf{H.} \textbf{1} \oplus \textbf{H.} \boldsymbol{\omega} \rangle) \equiv \text{true}\\ &\text{Ex}[<^{\text{H}}\text{-decComp}] = (\text{refl} \ , \text{refl} \ , \text{refl}) \end{split}$$

$$\begin{aligned} & \mathsf{Ex}[\oplus^{\mathsf{M}}\mathsf{Comp}]: \ \mathsf{M}.\mathbf{1} \ \oplus^{\mathsf{M}} \ \mathsf{M}.\omega \equiv \mathsf{M}.\omega + \mathsf{M}.\mathbf{1} \\ & \mathsf{Ex}[\oplus^{\mathsf{M}}\mathsf{Comp}] = \mathsf{refl} \end{aligned}$$

► Summary: Using mutual definitions and higher inductive types to faithfully represent ordinals in HoTT.

- ► Summary: Using mutual definitions and higher inductive types to faithfully represent ordinals in HoTT.
- ▶ Moral: Define operations on the data structure that is suited for the operation (then transport across with univalence).

- Summary: Using mutual definitions and higher inductive types to faithfully represent ordinals in HoTT.
- ► Moral: Define operations on the data structure that is suited for the operation (then transport across with univalence).
- ► Also: Can prove e.g. transfinite induction.

- Summary: Using mutual definitions and higher inductive types to faithfully represent ordinals in HoTT.
- ► Moral: Define operations on the data structure that is suited for the operation (then transport across with univalence).
- ► Also: Can prove e.g. transfinite induction.
- ▶ Future work: Going beyond ε_0 using a higher inductive type of Brouwer ordinals.

- Summary: Using mutual definitions and higher inductive types to faithfully represent ordinals in HoTT.
- ► Moral: Define operations on the data structure that is suited for the operation (then transport across with univalence).
- ► Also: Can prove e.g. transfinite induction.
- ▶ Future work: Going beyond ε_0 using a higher inductive type of Brouwer ordinals.
- Chuangjie Xu, Fredrik Nordvall Forsberg and Neil Ghani Three equivalent ordinal notation systems in cubical Agda CPP 2020.

