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QMS and models of HoTT

A model of HoTT should be a Quillen model structure with some
special properties.

One way to construct such a model in a topos E is via a premodel:

Definition
A premodel in a topos E consists of (Φ, I,V) where:

I Φ is a representable class of monos Φ ↪→ Ω, such that ...

I I is an interval 1⇒ I, such that ...

I V̇→ V is a universe of small families, such that ...

Such a set-up was used by Orton-Pitts to construct models of
HoTT in the extensional type theory of E , but it can also be used
to construct a QMS, as was originally done by Sattler.



QMS from a premodel

Along the way, one needs to construct a universe U̇→ U of fibrant
types and show that U is itself fibrant.

There are four man steps:

1. show that Kan filling can be reduced to composition,

2. prove the equivalence extension property for fibrations,

3. construct the universe of fibrations, which is univalent by (2),

4. show that a univalent universe has composition, and is thus
Kan by (1).

We will sketch (1), (3), and (4) today.
We first recall some basic definitions.



1. The cofibration awfs (C,TFib)

The monos C � Z classified by Φ ↪→ Ω are the cofibrations C.
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These are closed under pullbacks.



The cofibration awfs (C,TFib)

The generic cofibration 1� Φ determines a polynomial
endofunctor,

X+ :=
∑
ϕ:Φ

Xϕ.

This is a (fibered) monad,

+ : E // E

because of ...



The cofibration awfs (C,TFib)

In each slice E/X , the algebras (A, α) for the underlying pointed
endofunctor,

+X : E/X // E/X

are the trivial fibrations.
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They form the right class of the cofibration awfs (C,TFib).



The cofibration awfs (C,TFib)

The algebra structures on a trivial fibration correspond uniquely to
uniform right lifting structures against the cofibrations,
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that is, a coherent choice of diagonal fillers.



The fibration awfs (TCof,F)

For any map u : A→ B in E , the Leibniz adjunction

(−)⊗u a u⇒(−)

relates the pushout-product with u and the pullback-hom with u.

The functors (−⊗u) a (u⇒−) : E2 // E2 also satisfy

(c⊗u) � f ⇔ c � (u⇒ f )

with respect to the diagonal filling relation c � f .
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The fibration awfs (TCof,F)

Let us assume that the interval I has connections,

∧,∨ : I× I // I ,

making it a distributive lattice. This holds e.g. for E = SetC
op

,
presheaves on the Dedekind cubes C, the full subcategory of Cat
on the finite powers of 2 (the Lawvere theory of distributive
lattices).

We then define the fibrations in terms of the trivial fibrations by:

f ∈ F iff (δ⇒ f ) ∈ TFib

using the pullback-hom δ⇒ f with both endpoints δ : 1→ I.



The fibration awfs (TCof,F)

Definition
A map f : Y → X is a fibration if δ⇒ f is a trivial fibration.
Equivalently by transposition, f ∈ F iff

c⊗δ � f ,

Z +C (C × I)
��

c⊗δ
��

// Y

f
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Z × I //

99

X

for all cofibrations c : C � Z .

(This may be called “partial open box filling”)



Filling and Composition

Definition
Say that an object X has filling if it is fibrant in this sense, i.e. for
all cofibrations c : C � Z , there is a diagonal filler as in
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where the Leibniz exponential δ ⇒ X : X I → X is “evaluation at
the endpoint δ : 1→ I” (and we require the condition for both
endpoints).



Filling and Composition

Definition
Say that X has composition if for all cofibrations c : C � Z , there
is a diagonal filler k making both subdiagrams commute in
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where (∂ ⇒ X ) : X I → X × X is the Leibniz exponential of X by
the boundary map ∂ : 1 + 1→ I (and we require the condition for
both projections X × X → X ).



Filling and Composition

Proposition

An object X has filling if and only if it has composition.

Proof by pictures.

We want to fill the following open 2-box in X :

A′ B ′

A

a

OO

p
// B

b

OO



Filling and Composition

Proposition

An object X has filling if and only if it has composition.

Proof by pictures.

Make a higher dimensional composition problem using connections:
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Filling and Composition

Proposition

An object X has filling if and only if it has composition.

Proof by pictures.

Since X has composition, the (partial) open 3-box has a top face,
which is a filler for the original open 2-box.
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Filling and Composition

Proposition

An object X has filling if and only if it has composition.

Proof.
For an algebraic proof, first use the connections to get maps in E2
of the form

δ δ
=oo

��

δ ⊗ δ

OO

i ⊗ δoo

where i : 1→ 1 + 1.

x



Filling and Composition

From
δ δ

=oo

��

δ ⊗ δ

OO

i ⊗ δoo

we then get

δ ⇒X
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= // δ ⇒X

δ ⊗ δ ⇒X
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δ ⇒(δ ⇒X ) // δ ⇒(i ⇒X )



Filling and Composition

So for any cofibration c : C � Z and filling problem
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we can extend by maps
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Filling and Composition

Transposing the middle section yields
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��

// X I

δ⇒X
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Filling and Composition

Transposing the middle section yields
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· //
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X =
// X

which has a diagonal filler by composition, since c ⊗ δ is also a
cofibration.



Filling and Composition

Transposing back thus gives a diagonal filler
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which is a filler for the original problem
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Thus filling and composition are equivalent.



Weak equivalence

Definition
A map f : A // B is a weak equivalence if it factors as a trivial
cofibration followed by a trivial fibration.

A ��

∼
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f // B

·
∼

?? ??

It requires some work to show that these weak equivalences satisfy
the 3 for 2 property, giving a QMS. One step of the proof uses a
fibrant universe, which is our objective here.



The equivalence extension property

Definition (EEP)

The EEP says that weak equivalences extend along cofibrations
C ′� C in the following sense: given fibrations A′ // // C ′ and
B // // C and a weak equivalence w ′ : A′ ' C ′ ×C B over C ′,

A′
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∼
w ′
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// A
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w

  

C ′ ×C B
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// B

~~~~

C ′ // // C .

there is a fibration A // //C and a weak equivalence w : A ' B over
C that pulls back to w ′.

This is was shown by Voevodsky for Kan simplicial sets, and it
follows from our axioms.



The universe U of fibrations

Definition
A universe of fibrations is a small fibration U̇ // // U such that every
small fibration A // // X is a pullback of U̇ // // U along a canonical
classifying map X → U.

A

����

// U̇
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X // U



The universe U of fibrations

Proposition

There is a universe of fibrations.

Construction.
For any family A→ X there is an object of fibrations structures,

Fib(A) // X ,

sections of which correspond to fibration structures on A→ X .
Take U→ V to be the object of fibration structures on V̇→ V,

U = Fib(V̇) // V.

Then define U̇→ U by pulling back the universal small family.

U̇
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// V̇
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U // V



The universe U of fibrations

We said U = Fib(V̇), and we defined U̇→ U by:

U̇

��

// V̇

��

U // V

But Fib(−) is stable under pullback, so there is a section

U̇
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// V̇
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U //
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V

Fib(U̇)

OO

// Fib(V̇)

OO

Thus U̇ // U is a fibration.



The universe U of fibrations

A fibration structure α on a family A→ X therefore gives rise to a
factorization of the classifying map to V̇→ V.

A
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The universe U of fibrations

A fibration structure α on a family A→ X therefore gives rise to a
factorization of the classifying map to V̇→ V.

A
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Fib(A)
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// Fib(V̇)
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X //

UU 77

V



The universe U of fibrations

A fibration structure α on a family A→ X therefore gives rise to a
factorization of the classifying map to V̇→ V through the fibration
classifier U̇ // // U.

A
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//
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V̇
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U̇
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Fib(A)

""

// U
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X //

UU
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V

The construction of Fib uses the root functor (−)I a (−)I.



EEP in terms of U

Given a universe of fibrations U̇ // // U, the EEP says that Eq // U
is a TFib:

A′ ' B ′

����

%%

// U0 ' U1

{{

��

A ' B

��

// U̇

��

C ′ %%

%%

// Eq

{{
C

44

// U

This is one way of stating univalence for U̇ // // U.



U is fibrant

From univalence one can then show that the base U is fibrant.

Theorem
The universe U is fibrant.

Voevodsky proved this directly for Kan simplicial sets, using
minimal fibrations.

Shulman gave a general proof from univalence, using 3 for 2 for
weak equivalences.

Coquand gave a general proof from univalence that avoids 3 for 2
by using composition.



U is fibrant

By the reduction of filling to composition, it suffices to show:

Lemma
The universe U has composition.

Proof.
Consider a composition problem
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U is fibrant

The canonical map UI // U× U factors (over U× U) through the
object Eq of equivalences via i = IdtoEq,†
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†there is more to be said here, time permitting



U is fibrant

The canonical map UI // U× U factors (over U× U) through the
object Eq of equivalences via i := IdtoEq,†
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k
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But the projection Eq // U is a trivial fibration by univalence, so
there is a diagonal filler j . Composing gives the required k.

†there is more to be said here, time permitting



Done!


