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Bishop 1967

A set is defined by describing what must be done to
construct an element of the set, and what must be done
to show that two elements of the set are equal.



An older definition

A set of elements belonging to some conceptual sphere is
called well-defined if, on the basis of its definition . . . it
must be regarded as internally determined, both whether
any object of that conceptual sphere belongs as an
element to the mentioned set, and also whether two
objects belonging to the set, in spite of formal differences
in the mode of givenness, are equal to each other or not.



Cantor 1882

A set of elements belonging to some conceptual sphere is
called well-defined if, on the basis of its definition and in
accordance with the logical principle of the excluded third,
it must be regarded as internally determined, both
whether any object of that conceptual sphere belongs as
an element to the mentioned set, and also whether two
objects belonging to the set, in spite of formal differences
in the mode of givenness, are equal to each other or not.



A natural question:

Is Bishop’s informal description of a set enough to provide a formal
account of it within a suitable formalization of BISH?

If not, what kind of choices are the most compatible to BISH?



Feferman 1979

Let T be a formal theory of an informal body of mathematics M.

(i) T is adequate for M, if every concept, argument, and result of
M is represented by a (basic or defined) concept, proof, and a
theorem, respectively, of T .

(ii) T is faithful to M, if every basic concept of T corresponds to a
basic concept of M and every axiom and rule of T corresponds to or
is implicit in the assumptions and reasoning followed in M (i.e., T
does not go beyond M conceptually or in principle)

(iii) (Beeson 1981) T is suitable to M, if T is adequate for M and
faithful to M.



The standard interpretation of Bishop sets is within MLTT

The standard way to understand a Bishop set A is through a setoid
in MLTT i.e., a type A in a fixed universe U equipped with a term
': A→ A→ U (eqrel).

Even if we translate a Bishop set as a set in CZF, we get back to
setoids through Aczel’s interpretation of CZF into MLTT.



Is the theory of setoids a suitable formalization of Bishop’s set
theory?



It doesn’t seem faithful: the J-rule not in BISH

If A : U , then =A is the least reflexive relation on A (J-rule) and the
free setoid on A is εA := (A,=A).

Proposition (Universal property of free setoid)

For every (B,∼B) and every function f : A→ B, there is a
setoid-map εf : εA := A→ B sttfdc

εA

A B.

εfidA

f

Proof.
Let (εf )(a) := f (a), and since =B is the least reflexive rel on B,

a =A a′ → (εf )(a) =B (εf )(a′)→ f (a) ∼B f (a′).



A is a choice set(oid) iff every f : X � A, has a right inverse g of f

A X A,
g f

idA

“Every set is a choice set” ⇔ AC.

Proposition

(A,=A) is a choice set.

Proof. ∏
a:A

∑
x :X

(
f (x) =A a

)
→

∑
g :A→X

∏
a:A

f (g(a)) =A a

a =A a′ → g(a) =X g(a′)→ g(a) ∼X a′.



Corollary

Every setoid is a quotient of a choice set.

Proof.
q : (A,=A)� (A,∼A), a 7→ a, and a =A a′ → a ∼A a′.



The presentation axiom
If C is a category and P in C0, then P is projective, if
∀A,B∈C0∀f :A�B∀g :P→B∃h:P→A sttfdc

P

A B.

h

f

g

Presentation axiom (PAx) in C : C has enough projectives i.e., for
every object C in C there is f : P � C , where P is projective.

PAx⇒ DC, (M |= ZF + DC + ¬AC and M 6|= PAx).

Not in Aczel’s CZF.
ZF ` (PAx⇒ AC)?
IZF + PAx 6` AC.
CZF + AC ` REM, IZF + AC ` PEM, IZF + PAx implies no
form of PEM.
(See Rathjen 2006).



Proposition

A projective setoid (P,∼P) is a choice set.

Proof.

P

X P.

h

f

idP



Proposition (Palmgren)

A choice set(oid) (P,∼P) is a projective setoid.

Proof.
Let f , g , we want to define h sttfdc

P

A B.

h

f

g

Q :=
∑

(a,p):A×P

f (a) =B g(p)

p1 : Q → A, p1(a, p, e) := a,

p2 : Q → P, p2(a, p, e) := p,

f ◦ p1 = g ◦ p2.



proof continued

Since p2 : Q � P and P is a choice set, there is k : P → Q s.t.
p2 ◦ k = idP . If h := p1 ◦ k ,

P

A B.

QP

f

g
h

p2

p1

k

f ◦ (p1 ◦k) = (f ◦p1)◦k = (g ◦p2)◦k = g ◦ (p2 ◦k) = g ◦ idP = g .

Corollary

PAx holds for setoids.

Proof.
Every setoid is the surjective image of a choice set, hence of a
projective setoid.



It seems that

Setoids in a universe U do not form a faithful formalization of
Bishop sets. They have properties that Bishop sets are not expected
to have.



Moreover

(Moerdijk-Palmgren, 2000) Setoids with a hierarchy of universes is
the standard model of a ΠW -pretopos (:⇔ lccc pretopos with
W -types ⇔ exact ML-category).

A ΠW -pretopos is closed under exact completion (BvdBerg),

Most toposes are not,

Hence, there are many ΠW -pretoposes that are not toposes!

MLTT + W -types ∼ CZF + REA

BISH∗ := BISH + inductive definitions with rules of countably

many premisses

is much weaker.



Bishop’s theory of sets (Chapter 3 of Bi67 and BB85) has left many
issues unsettled (P(X ), Fam(I ), dependency).

Richman’s mixture of category theory and Bishop’s set theory in
MRR88 is underdeveloped too: no explanation is provided for
understanding categories within BISH.

BST is a reconstruction of Bishop’s theory of sets, that will help us
formulate an adequate and faithful formalization of the latter, and
hopefully answer the following question too:

What kind of category is abstracted from Bishop sets?

(categorical characterization of Bishop sets ≈ Bishop setoids)
Palmgren 2012: CETCS, a predicative and constructive variation of
Lawvere’s ETCS.



Primitives of BST I

1. (s, t).

2. equality := between terms.

3. pr1(s, t) := s and pr2(s, t) := t.

4. N.

5. Any other totality X is defined through a
“membership-formula” x ∈ X .

6. A defined equality on X is a formula x =X y that satisfies the
properties of an equivalence relation.

7. If X is a set and Y is a totality, an assignment routine
α : X  Y from X to Y is a finite routine assigning an
element y of Y , to each given element x of X . In this case we
write α(x) := y .

8. If X ,Y are sets, an assignment routine f : X  Y is a
function, if f (x) =Y f (x ′), for every x , x ′ ∈ X , such that
x =X x ′. In this case we write f : X → Y .



Primitives of BST II

1. F(X ,Y ) with pointwise equality is a set (function
extensionality).

2. The (univalent) universe of sets V0 with equality

X =V0 Y :⇔ ∃f ∈F(X ,Y )∃g∈F(Y ,X )

(
g ◦ f = idX & f ◦ g = idY

)
is a class.

3. If I is a set and µ0 : I  V0, a dependent assignment routine
over µ0 is an assignment routine µ1 that assigns to each
element i in I an element µ1(i) in µ0(i). We denote such a
routine by

µ1 :
k

i∈I

µ0(i),

and their totality by A(I , µ0). If µ1, ν1 :
c

i∈I µ0(i), we define

µ1 =A(I ,µ0) ν1 :⇔ ∀i∈I

(
µ1(i) =µ0(i) ν1(i)

)
.



If I is a set, and D(I ) := {(i , j) ∈ I × I | i =I j}, a family of sets
indexed by I is a pair Λ := (λ0, λ1), where λ0 : I  V0, and

λ1 :
k

(i ,j)∈D(I )

F
(
λ0(i), λ0(j)

)
,

such that, if λ1(i , j) := λij , for every (i , j) ∈ D(I ),

(a) For every i ∈ I , we have that λii := idλ0(i).

(b) If i =I j and j =I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λjk

λij λik

If i =I j , we call the function λij the transport map from λ0(i) to
λ0(j). and we call λ1 the modulus of function-likeness of λ0:

(λij , λji ) : λ0(i) =V0 λ0(j).



Let Λ := (λ0, λ1) and M := (µ0, µ1) be I -families of sets. A
family-map from Λ to M is a d.a.r.

Ψ :
k

i∈I

F
(
λ0(i), µ0(i)

)
such that for every (i , j) ∈ D(I ) tfdc

µ0(i) µ0(j).

λ0(j)λ0(i)

µij

λij

Ψi Ψj

MapI (Λ,M) with Ψ =MapI (Λ,M) Ξ :⇔ ∀i∈I

(
Ψi =F(λ0(i),µ0(i)) Ξi

)
.

Fam(I ) the totality of I -families of sets with equality

Λ =Fam(I ) M :⇔ ∃Φ∈MapI (Λ,M)∃Ξ∈MapI (M,Λ)

(
Φ◦Ξ = idM & Ξ◦Φ = idΛ

)
.



Let Λ := (λ0, λ1) be an I -family of sets.

The exterior union
∑

i∈I λ0(i) of Λ is defined by

w ∈
∑
i∈I

λ0(i) :⇔ ∃i∈I∃x∈λ0(i)

(
w := (i , x)

)
,

(i , x) =∑
i∈I λ0(i) (j , y) :⇔ i =I j & λij (x) =λ0(j) y .

The totality
∏

i∈I λ0(i) of dependent functions over Λ is defined by

Φ ∈
∏
i∈I

λ0(i) :⇔ Φ ∈ A(I , λ0) & ∀(i ,j)∈D(I )

(
Φj =λ0(j) λij (Φi )

)
,

and it is equipped with the equality of A(I , λ0).



Proposition

Let Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I ), and Ψ ∈ MapI (Λ,M).

(i) For every i ∈ I the a.r. eΛ
i : λ0(i) 

∑
i∈I λ0(i), defined by

x 7→ (i , x), is an embedding of λ0(i) into
∑

i∈I λ0(i).

(ii) The a.r. ΣΨ :
∑

i∈I λ0(i) 
∑

i∈I µ0(i),

ΣΨ(i , x) := (i ,Ψi (x)),

is a function from
∑

i∈I λ0(i) to
∑

i∈I µ0(i), s.t. for every i ∈ I tfdc

∑
i∈I λ0(i)

∑
i∈I µ0(i).

µ0(i)λ0(i)

ΣΨ

Ψi

eΛ
i eM

i

(iii) If every Ψi is an embedding, then Σψ is an embedding.



Proposition

Let Λ := (λ0, λ1), M := (µ0, µ1) ∈ Fam(I ), and Ψ ∈ MapI (Λ,M).

(i) For every i ∈ I the a.r. πΛ
i :
∏

i∈I λ0(i) λ0(i), defined by
Θ 7→ Θi , is a function from

∏
i∈I λ0(i) to λ0(i).

(ii) The a.r. ΠΨ :
∏

i∈I λ0(i) 
∏

i∈I µ0(i),

[ΠΨ(Θ)]i := Ψi (Θi ),

is a function from
∏

i∈I λ0(i) to
∏

i∈I µ0(i), s.t. for every i ∈ I tfdc

∏
i∈I λ0(i)

∏
i∈I µ0(i).

µ0(i)λ0(i)

ΠΨ

Ψi

πΛ
i πM

i

(iii) If every Ψi is an embedding, then ΠΨ is an embedding.



Distributivity of
∏

over
∑

(In lccc, Martin-Löf, Awodey)

Let X ,Y be sets,

(ρ0, ρ1) is an (X × Y )-family of sets,

If x ∈ X , let (λx
0, λ

x
1) is the Y -family

λx
0(y) := ρ0(x , y), λx

1 : ρ0(x , y)→ ρ0(x , y ′), λx
yy ′ := ρ(x ,y)(x ,y ′)

Let the X -family of sets (µ0, µ1), where

µ0(x) :=
∑
y∈Y

ρ0(x , y),

µ1 :
k

(x ,x ′)∈D(X )

F

(∑
y∈Y

ρ0(x , y),
∑
y∈Y

ρ0(x ′, y)

)
µxx ′(y , u) :=

(
y , ρ(x ,y)(x ′,y)(u)

)
.



Lemma
If Φ ∈

∏
x∈X µ0(x) :=

∏
x∈X

∑
y∈Y ρ0(x , y), the a.r. fΦ : X  Y ,

x 7→ pr1(Φx ), is a function from X to Y .

Lemma
If f : X → Y the pair

(
νf

0 , ν
f
1

)
is an X-family of sets, where

ν0(x) := ρ0(x , f (x)),

νf
1 :

k

(x ,x ′)∈D(X )

F
(
ρ0(x , f (x)), ρ0(x ′, f (x ′))

)
, νf

xx ′ := ρ(x ,f (x))(x ′,f (x ′)).

Lemma
The pair (ξ0, ξ1) is an F(X ,Y )-family of sets, where

ξ0(f ) :=
∏
x∈X

νf
0 (x) :=

∏
x∈X

ρ0(x , f (x)),

ξff ′ :
∏
x∈X

ρ0(x , f (x))→
∏
x∈X

ρ0(x , f ′(x)), [ξff ′(H)]x := ρ(x ,f (x))(x ,f ′(x))(Hx ).



Theorem
If

Φ ∈
∏
x∈X

µ0(x) :=
∏
x∈X

∑
y∈Y

ρ0(x , y),

there is
ΘΦ ∈

∏
x∈X

νfΦ
0 :=

∏
x∈X

ρ0(x , fΦ(x))

such that (
fΦ,ΘΦ

)
∈

∑
f ∈F(X ,Y )

∏
x∈X

ρ0(x , fΦ(x))

and the following a.r. is a function:

ac :
∏
x∈X

∑
y∈Y

ρ0(x , y) 
∑

f ∈F(X ,Y )

∏
x∈X

ρ0(x , f (x)),

Φ 7→
(
fΦ,ΘΦ

)
.



Richman’s categories in BISH

Definition
If I is a set, the equality-category of I has objects the elements of I ,
and if i , j , k ∈ I , then

Hom=I
(i , j) := {x ∈ {0} | i =I j},

1i := 0,

y ∈ Hom=I
(j , k) & x ∈ Hom=I

(i , j)

y ◦ x := 0 ∈ Hom=I
(i , k)

.

An equality-functor from a set I to a set J is a pair Φ := (φ0, φ1),
where φ0 : I  J and

φ1 :
k

i ,i ′∈I

F
(
Hom=I

(i , i ′), Hom=J
(φ0(i), φ0(i ′))

)
.



Remark
Let I , J be sets.

(i) If Φ := (φ0, φ1) is an equality-functor from I to J, φ0 is a
function from I to J.

(ii) If f ∈ F(I , J), there is an equality-functor Φf :=
(
φf

0, φ
f
1

)
such

that φf
0 := f .



The equality-category of the universe of sets V0 has objects its
elements and if X ,Y ∈ V0, we define

Hom=V0
(X ,Y ) :=

{
(f , f ′) : F(X ,Y )×F(Y ,X ) | (f , f ′) : X =V0 Y

}
,

1X := (idX , idX ),

(f , f ′) ∈ Hom=V0
(X ,Y ) & (g , g ′) ∈ Hom=V0

(Y ,Z )

(g ◦ f , f ′ ◦ g ′) ∈ Hom=V0
(X ,Z )

.

An equality-functor from a set I to V0 is a pair Φ := (φ0, φ1),
where φ0 : I  V0 and

φ1 :
k

i ,j∈I

F
(
Hom=I

(i , j), Hom=V0
(φ0(i), φ0(j))

)
such that the following hold:

(a) For every i ∈ I , [φ1(i , i)](1i ) := 1φ0(i).

(b) For every i , j , k ∈ I , if x ∈ Hom=I
(i , j) and y ∈ Hom=I

(j , k), then

[φ1(i , k)](y ◦ x) = [φ1(j , k)](y) ◦ [φ1(i , j)](x).



Remark
Let I be a set.

(i) If Φ := (φ0, φ1) is an equality-functor from I to V0, then
ΛΦ :=

(
λΦ

0 , λ
Φ
1

)
, where

λΦ
0 (i) := φ0(i) & λΦ

1 (i , j) := prF(φ0(i),φ0(j))

(
[φ1(i , j)](0)

)
,

for every i ∈ I and every (i , j) ∈ D(I ), is an I -family of sets.

(ii) If Λ := (λ0, λ1) is an I -family of sets, then ΦΛ :=
(
φΛ

0 , φ
Λ
1

)
,

where
φΛ

0 (i) := λ0(i) & [φΛ
1 (i , j)](x) := (λij , λji ),

for every i , j ∈ I and every x ∈ HomI (i , j), is an equality-functor
from I to V0.

(iii) A family-map from Λ to M is a natural transformation from the
functor ΦΛ to the functor ΦM .



Remark
Let I be a set and i0 ∈ I . If Y i0 := (y i0

0 , y
i0
1 ), where y i0

0 : I  V0 is

defined by y i0
0 (i) := Hom=I

(i , i0), for every i ∈ I , and

y i0
1 :

k

(i ,j)∈D(I )

F
(
Hom=I

(i , i0), Hom=I
(j , i0)

)
y i0

1 (i , j) := yij : Hom=I
(i , i0)→ Hom=I

(j , i0)

yij (x) := x ,

for every (i , j) ∈ D(I ) and x ∈ Hom=I
(i , i0), is an I -family of sets.

Moreover, if i =I j , the d.a.r.

Kij :
k

k∈I

F
(
Y i

0(k),Y j
0(k)

)
,

Kij (k) : Hom=I
(k , i)→ Hom=I

(k , j)

x 7→ x ,

is in MapI (Y i ,Y j ).



Yoneda lemma for Fam(I )

Theorem
If I ∈ V0, i0 ∈ I , and Λ ∈ Fam(I ), the are maps

ei0,Λ : MapI (Y i0 ,Λ)→ λ0(i0)

εi0,Λ : λ0(i0)→ MapI (Y i0 ,Λ),

(ei0,Λ, εi0,Λ) : MapI (Y i0 ,Λ) =V0 λ0(i0).

If i =I j , M ∈ Fam(I ), and Ψ ∈ Map(Λ,M), tfdc

MapI (Y j ,M) µ0(j).

λ0(i)MapI (Y i ,Λ)

ej ,M

ei ,Λ

mapI (Kji ,Ψ) Ψj ◦ λij

Hence, MapI (Y i ,Y j ) =V0 Hom=I
(i , j).



Let Λ := (λ0, λ1) and M := (µ0, µ1) be I -families of sets.

A family of Bishop topologies associated to Λ is a pair
ΦΛ :=

(
φΛ

0 , φ
Λ
1

)
, where φΛ

0 : I  V0, and

φΛ
1 :

k

(i ,j)∈D(I )

F(φΛ
0 (i), φΛ

0 (j)),

(i) φΛ
0 (i) := Fi and Fi := (λ0(i),Fi ) is a Bishop space.

(ii) λij ∈ Mor(Fi ,Fj ), for every (i , j) ∈ D(I ).

(iii) φΛ
1 (i , j) := λ∗ji : Fi → Fj , for every (i , j) ∈ D(I ).

S :=
(
λ0, λ1, φ

Λ
0 , φ

Λ
1

)
is called a spectrum over I with Bishop spaces

Fi and Bishop isomorphisms λij .

If T :=
(
µ0, µ1, φ

M
0 , φ

M
1

)
is an I -spectrum with Bishop spaces Gi

and Bishop isomorphisms µij , a spectrum-map from S to T is a
family-map Ψ from Λ to M.

A spectrum-map Ψ from S to T is continuous, if Ψi : λ0(i)→ µ0(i)
is in Mor(Fi ,Gi ), for every i ∈ I .



Remark
Let S := (λ0, λ1, φ

Λ
0 , φ

Λ
1 ) be an I -spectrum with Bishop spaces Fi

and Bishop isomorphisms λij . If Θ ∈
∏

i∈I Fi , the a.r.

fΘ :
(∑

i∈I

λ0(i)
)
 R,

fΘ(i , x) := Θi (x),

is a function from
∑

i∈I λ0(i) to R.

Proof.
If

(i , x) =∑
i∈I λ0(i) (j , y) :⇔ i =I j & λij (x) =λ0(j) y ,

then by the definition of a dependent function over a set-indexed
family of sets

fΘ(i , x) := Θi (x) =R [λ∗ij (Θj )](x) := [Θj◦λij ](x) =R Θj (y) := fΘ(j , y).



Let S := (λ0, λ1, φ
Λ
0 , φ

Λ
1 ) be an I -spectrum with Bishop spaces Fi

and Bishop isomorphisms λij . The sum Bishop space of S is the pair

∑
i∈I

Fi :=

(∑
i∈I

λ0(i),
∑
i∈I

Fi

)
, where

∑
i∈I

Fi :=
∨

Θ∈
∏

i∈I ϕ
Λ
0 (i)

fΘ,

and the dependent product Bishop space of S is the pair

∏
i∈I

Fi :=

(∏
i∈I

λ0(i),
∏
i∈I

Fi

)
, where

∏
i∈I

Fi :=

f ∈Fi∨
i∈I

(
f ◦ πΛ

i

)
,

and πΛ
i is the projection function.



Proposition

Let S := (λ0, λ1, φ
Λ
0 , φ

Λ
1 ) be an I spectrum with Bishop spaces Fi

and Bishop isomorphisms λij , T := (µ0, µ1, φ
M
0 , φ

M
1 ) an I -spectrum

with Bishop spaces Gi and Bishop isomorphisms µij , and Ψ a
spectrum-map from S to T .

(i) If i ∈ I , then eΛ
i ∈ Mor

(
Fi ,
∑

i∈I Fi

)
.

(ii) If Ψ is continuous, then ΣΨ ∈ Mor
(∑

i∈I Fi ,
∑

i∈I Gi

)
.

(iii) If Ψ is continuous, then ΠΨ ∈ Mor
(∏

i∈I Fi ,
∏

i∈I Gi

)
.



Directed families of sets

Let (I ,≺I ) be a directed set. A directed family of sets indexed by
(I ,≺I ) is a pair Λ≺ := (λ0, λ

≺
1 ), where λ0 : I  V0, and

λ≺1 :
k

(i ,j)∈≺(I )

F
(
λ0(i), λ0(j)

)
,

(a) For every i ∈ I , we have that λ≺ii := idλ0(i).

(b) If i ≺I j and j ≺I k, the following diagram commutes

λ0(j) λ0(k).

λ0(i)

λ≺jk

λ≺ij λ≺ik

(i , x) =∑≺
i∈I µ0(i) (j , y) :⇔ ∃k∈I

(
i ≺ k & j ≺ k & λ≺ik(x) =λ0(k) λ

≺
jk (y)

)
.



Is the theory of setoids an adequate formalization of Bishop’s set
theory?



In MLTT Fam(I ) corresponds to the type I → U , which “belongs”
to the successor universe U ′ of U .

If Fam(I ) was a Bishop set, the constant I -family with value Fam(I )
would be defined though a totality in which it belongs to. From a
predicative point of view, this cannot be accepted.

Moreover, the equality of Fam(I ), as that of V0, has computational
content, and the category that naturally corresponds to Fam(I ) has
non-trivial Hom(Λ,M).

On the other hand, Fam(I ) is not a class, like V0, or P(X ).

Fam(I ) as an impredicative set?

Bishop’s informal definition cannot distinguish between sets, classes,
and impredicative sets.

Hence, Bishop’s description of the notion of set is incomplete for
the needs of (formalisation of) BISH.



CETCS, Palmgren 2012, constructive version of Lawvere’s
ETCS

1. C is cartesian: it has a terminal object 1, it has products and
equalizers.

2. C is cocartesian: it has an initial object 0, it has sums and
coequalizers.

3. (Π) C has dependent products.

4. (G ) An onto and monic arrow is an iso.

5. (PAx) For every object A there is an onto arrow P → A, where
P is a choice object.

6. 0 has no elements.



1. (DP) If A
i→ S

j← B is a sum diagram, then for every z ∈ S
we have that zεi or zεj .

1

A S .

α

i

z

2. (NT) If 1
x→ S

y← 1 is a sum diagram, then x 6= y .

3. (Fct) Any f is factored as ie, where i is a mono and e is onto.

4. (Eff) All equivalence relations are effective.

Replace PAx with DC, and G with the weaker G0 and G1:

(G0) For any f , g : A→ B, if ∀x∈A(fx = gx), then f = g .

(G1) An arrow f : A→ B is monic iff ∀x ,y∈A(fx = fy ⇒ x = y).
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