
Category Theory in Explicit Mathematics

Lukas Jaun

ABM

2019-05-02



Overview

I Explicit Mathematics

I Category Theory

I Towards a Category of Sets in Explicit Mathematics. Three
categories and some selected properties.

I EC
◦ Extensiveness

I ECB: implicit Bishop Sets

◦ Regularity
◦ Exactness

I ECex: explicit Bishop Sets

I Universes in Explicit Mathematics and in category theory



Explicit Mathematics

I Hilbert-style System with two kinds of variables first developed by
Feferman.

I Formulas built from

ϕ ∧ ψ, ϕ ∨ ψ, ϕ⇒ ψ,

ϕ = ψ, ¬ϕ,
∃xϕ, ∀xϕ,

∃Xϕ, ∀Xϕ,

R (s) , s↓

I We have modus ponens and quantifier-axioms/rules.

I It has an intensional equality



Explicit Mathematics

I Any term can “act as an operation”

I For two terms s and t, we can apply

s(t) “operation s applied to argument t”

t(s) “operation t applied to argument s”



Explicit Mathematics

I Undefinedness built in.

I Consider the natural numbers N = 0, 1, 2, . . .

x + solve(x , y) = y ⇔ y − x = solve(x , y).

I 3 + s
?
= 2

I −1 is not a natural number, so solve(3, 2) should be undefined.

I Explicit Mathematics has a statement for that:

I solve(2, 3)↓ ∧ solve(2, 3) = 1 but ¬solve(3, 2)↓.

I We define f (x) :≡ x + 1

Then (f (1))↓, but ¬(1(f ))↓.



Explicit Mathematics

I Undefinedness built in.

I Consider the natural numbers N = 0, 1, 2, . . .

x + solve(x , y) = y ⇔ y − x = solve(x , y).

I 3 + s
?
= 2

I −1 is not a natural number, so solve(3, 2) should be undefined.

I Explicit Mathematics has a statement for that:

I solve(2, 3)↓ ∧ solve(2, 3) = 1 but ¬solve(3, 2)↓.

I We define f (x) :≡ x + 1

Then (f (1))↓, but ¬(1(f ))↓.



Classes in Explicit Mathematics have names

un(a, b)

b

a

01

2

0

4

un(c, d)

d

c

10

4

1

2

Name Class
a {0, 1, 2}
b {0, 4}
c {0, 1, 4}
d {1, 2}

un(a,b) {0, 1, 2, 4}
un(c,d) {0, 1, 2, 4}

x is an element of un(a, b)
if and only if

x is an element of un(c , d)

but

un(a, b) 6= un(c , d)



Classes in Explicit Mathematics have names

un(a, b)

b

a

01

2

0

4

un(c, d)

d

c

10

4

1

2

Name Class
a {0, 1, 2}
b {0, 4}
c {0, 1, 4}
d {1, 2}

un(a,b) {0, 1, 2, 4}
un(c,d) {0, 1, 2, 4}

x is an element of un(a, b)
if and only if

x is an element of un(c , d)

but

un(a, b) 6= un(c , d)



Classes in Explicit Mathematics have names

un(a, b)

b

a

01

2

0

4

un(c, d)

d

c

10

4

1

2

Name Class
a {0, 1, 2}
b {0, 4}
c {0, 1, 4}
d {1, 2}

un(a,b) {0, 1, 2, 4}
un(c,d) {0, 1, 2, 4}

x is an element of un(a, b)
if and only if

x is an element of un(c , d)

but

un(a, b) 6= un(c , d)



Some Notation for Explicit Mathematics

Notation

t↓ “t is defined”

R (a) “a is a name of some class”

x ∈̇ a “x is an element in the class named by a.”

fx “function application f (x)”



Categories

I A category has objects and morphism (points and arrows)

•

• •

I with composition: for all
a

b c

f

g

there is some g ◦ f :

a

b c

f g◦f

g



Categories

I A category has objects and morphism (points and arrows)

•

• •
I with composition: for all

a

b c

f

g

there is some g ◦ f :

a

b c

f g◦f

g



Two Laws:

I Associativity of arrows:

• • •

• • • •

• • •

g◦f h

f g h

f h◦g

I Generally written as

• • • •

g◦f

f

h◦(g◦f )=h◦g◦f =(h◦g)◦f

h◦g

g h



Two Laws:

I Identity: All objects have an identity arrow: • aid(a)

For all arrows f : a→ b we require

a bid(a)
f = a bf = a bf

id(b)



Example 1: Traveling by train

I Objects: Cities

I Morphisms: Traveling by train (in both directions)

I Composition: Taking consecutive train lines

I Identity: Staying in a city

I (Bern → Lausanne → Sion → Thun → Bern) 6= id(Bern).



Example 1: Traveling by train

I Objects: Cities

I Morphisms: Traveling by train (in both directions)

I Composition: Taking consecutive train lines

I Identity: Staying in a city

I (Bern → Lausanne → Sion → Thun → Bern) 6= id(Bern).



Example 2: Database design

House-Cat

String

Person

Name Name

Owner

House-Cat Name Owner

C1 Schrödinger P7
2 Snowball II P8

Person Name

P7 Alice
P8 Bob

String

Alice
Bob

Snowball II
Schrödinger



Example 2: Database design

House-Cat

String

Person

Name Name

Owner

House-Cat Name Owner

C1 Schrödinger P7
2 Snowball II P8

Person Name

P7 Alice
P8 Bob

String

Alice
Bob

Snowball II
Schrödinger



Example 3: Categories of natural numbers

I Discrete:

• 0 • 1 • 2 • 3 · · ·

id(0) id(1) id(2) id(3)

I Totally Ordered:

• 0 • 1 • 2 • 3 · · ·

id(0) id(1)

≤

id(2)

≤

id(3)

≤ ≤



Example 4: “Traditional” Categories

Name Objects Morphisms
Grp Groups Group homomorphisms
Rng Commutative Rings Ring homomorphisms
Top Topological spaces Continuous maps
hTop Topological spaces Homotopy classes of cont. maps
Vect Vector spaces Linear maps
Hilb Hilbert spaces Bounded linear operators

Lattice elements ≤
• Group elements



Idea of Category Theory

I Study of the structural properties of a subject.

I Relations between objects are more important than how a single
object is defined.

I Tells us what to look for when studying a new field.
(Formal definition of products / sums / quotients /etc.)

I It lets us transfer knowledge from one field to another.



Two Styles of Category Theory

I Cat-Category Theory

• Diagram chasing
• Equational Reasoning
• Adjunctions in unit/counit formulation

I Set-Category Theory

• Representability
• “Proof by Yoneda”
• Adjunctions in the form of Hom(FA,B) ∼= Hom(A,UB).



Category of Sets

I Category of sets and functions

I Very good Properties

I Extremely well-studied (Set Theory)

I Other categories are studied in relation to the category of sets.



“Category of sets” in Explicit Mathematics

I Explicit Mathematics does not have sets it has classes

I Question: How many properties of sets can we get?

I Short answer: Surprisingly many!



“Category of sets” in Explicit Mathematics

I Explicit Mathematics does not have sets it has classes

I Question: How many properties of sets can we get?

I Short answer: Surprisingly many!



The category EC (Elementary Comprehension)

I The most “natural” category in Explicit Mathematics

I Objects: Classes

I Morphisms: (total) operations between classes
such that (f =EC g) : a→ b if and only if (∀x ∈̇ a)(fx = gx).



The category EC (Elementary Comprehension)

I Main problem: EC does not have “function spaces”

I It is not cartesian closed:

I For every operation
g : a× b → c

there should be exactly one operation

ĝ : a→ cb

into the Exponential Object (“function space”) of operations from
the class b to the class c .

I There are “too many” terms representing the same operation.



The category EC (Elementary Comprehension)

I Main problem: EC does not have “function spaces”

I It is not cartesian closed:

I For every operation
g : a× b → c

there should be exactly one operation

ĝ : a→ cb

into the Exponential Object (“function space”) of operations from
the class b to the class c .

I There are “too many” terms representing the same operation.



The Category EC

I EC has all finite limits:

• It has all finite products
• and all preimages:

For f : x → y and b ⊂̇ y there always exists a preimage class
f −1{b}.

I EC has all binary coproducts (disjoint unions)

I Preimages and coproducts interact well. (EC is an extensive
category)



The Category EC

I EC has all finite limits:

• It has all finite products
• and all preimages:

For f : x → y and b ⊂̇ y there always exists a preimage class
f −1{b}.

I EC has all binary coproducts (disjoint unions)

I Preimages and coproducts interact well. (EC is an extensive
category)



Extensiveness

I A set-like property of disjoint unions:

I Maps into disjoint unions should be determined by two maps into its
parts:
• • •

!

a ] b a b

h f g

I If a category satisfies this, it is called extensive.

I A category which is exact and extensive is called a pretopos.



Bishop sets

A set is not an entity which has an ideal existence. A set exists
only when it has been defined. To define a set we prescribe, at
least implicitly, what we (the constructing intelligence) must do
in order to construct an element of the set, and what we must
do to show that two elements of the set are equal. (Bishop)

Two Interpretations for equality:

I We “must show something.”
It is enough to prove a proposition:
implicit Bishop sets

I We have to constuct something. This leads to the defintion of:
explicit Bishop sets.



Bishop sets

A set is not an entity which has an ideal existence. A set exists
only when it has been defined. To define a set we prescribe, at
least implicitly, what we (the constructing intelligence) must do
in order to construct an element of the set, and what we must
do to show that two elements of the set are equal. (Bishop)

Two Interpretations for equality:

I We “must show something.”
It is enough to prove a proposition:
implicit Bishop sets

I We have to constuct something. This leads to the defintion of:
explicit Bishop sets.



The category ECB

I Implicit Bishop sets

I The “obvious” way to fix the problem of cartesian closure in EC.

I Each object is now represented by pair 〈z , r〉 of classes

I such that r ⊆ z × z is an equivalence relation on z .

I Morphisms f : 〈z , r〉 → 〈y , s〉 are operations between the classes
which respect the given equivalence relations:

(∀a ∈̇ z)(f (a) ∈̇ y) ∧ (b ≈r a⇒ f (b) ≈s f (a))



The category ECB

I Implicit Bishop sets

I The “obvious” way to fix the problem of cartesian closure in EC.

I Each object is now represented by pair 〈z , r〉 of classes

I such that r ⊆ z × z is an equivalence relation on z .

I Morphisms f : 〈z , r〉 → 〈y , s〉 are operations between the classes
which respect the given equivalence relations:

(∀a ∈̇ z)(f (a) ∈̇ y) ∧ (b ≈r a⇒ f (b) ≈s f (a))



The category ECB

I ECB is (Locally) cartesian closed

I Quotients are constructed as equivalence relations on classes.

I ECB is a regular category

I finitely complete (has all finite limits)

I disjoint & stable binary coproducts



Regularity

I Given any morphism f : a→ b we’d like to be able to form the
quotient ”a�(f (a0) = f (a1)).”

I Equivalent formulations: Any morphism f : a→ b has a
pullback-stable factorization into a regular epimorphism followed by
a monomorphism.

I “The category has a strong-enough notion of images”

a b

im(f )

f

p
f̃



Regularity

I Given any morphism f : a→ b we’d like to be able to form the
quotient ”a�(f (a0) = f (a1)).”

I Equivalent formulations: Any morphism f : a→ b has a
pullback-stable factorization into a regular epimorphism followed by
a monomorphism.

I “The category has a strong-enough notion of images”

a b

im(f )

f

p
f̃



Regularity: Why do we care?

I Regular categories have an internal language with existence ∃ and
conjunction ∧.

I They have a calculus (in fact a category) of relations.

I Relations have a meet-semilattice ordering preserved under
composition of relations:

R ≤ S ⇒

{
R ◦ T ≤ S ◦ T

Q ◦ R ≤ Q ◦ S

I Every relation R(x , y) have an opposite relation R◦(y , x).

I Relations have binary intersections:

(R ∩ S)(x , y) if and only if R(x , y) and S(x , y)



Regularity: Why do we care?

I Regular categories have an internal language with existence ∃ and
conjunction ∧.

I They have a calculus (in fact a category) of relations.

I Relations have a meet-semilattice ordering preserved under
composition of relations:

R ≤ S ⇒

{
R ◦ T ≤ S ◦ T

Q ◦ R ≤ Q ◦ S

I Every relation R(x , y) have an opposite relation R◦(y , x).

I Relations have binary intersections:

(R ∩ S)(x , y) if and only if R(x , y) and S(x , y)



Regularity: Why do we care?

Regular categories have arrows that “work like in set theory”

I Every arrow f : a→ b has a graph Gf (a, b).

I It allows us to construct arrows from graphs: If F (a, b) is

I total:
∆a ≤ (F ◦ ◦ F )

(For all b0 there exists a0 such that F (a0, b0))
I functional:

(F ◦ F ◦) ≤ ∆b

(For all F (a0, b), F (a1, b) we have a0 = a1)

There exists a unique arrow fF : a→ b



Regularity: Why do we care?

Regular categories have arrows that “work like in set theory”

I Every arrow f : a→ b has a graph Gf (a, b).

I It allows us to construct arrows from graphs: If F (a, b) is
I total:

∆a ≤ (F ◦ ◦ F )

(For all b0 there exists a0 such that F (a0, b0))

I functional:
(F ◦ F ◦) ≤ ∆b

(For all F (a0, b), F (a1, b) we have a0 = a1)

There exists a unique arrow fF : a→ b



Regularity: Why do we care?

Regular categories have arrows that “work like in set theory”

I Every arrow f : a→ b has a graph Gf (a, b).

I It allows us to construct arrows from graphs: If F (a, b) is
I total:

∆a ≤ (F ◦ ◦ F )

(For all b0 there exists a0 such that F (a0, b0))
I functional:

(F ◦ F ◦) ≤ ∆b

(For all F (a0, b), F (a1, b) we have a0 = a1)

There exists a unique arrow fF : a→ b



Exactness

I In set theory (take ZFC ):
If R ⊂ X × X is a binary equivalence relation on X we can form the
quotient set X�R.

I In a regular category, we can do the same thing in those cases where
R is generated by a graph.

I We would like this property for all equivalence relations.

I If this holds, we call this an exact category.



The category ECB

I The category of implicit Bishop sets is exact if we allow a choice
principle:

(ACV ) ∀x∃yA[x , y ]⇒ ∃f ∀xA[x , f (x)]

We need a single instance of A[x , y ]:

(R (x) ∧ ∃z(z ∈̇ x))⇒ y ∈̇ x



Finite cocompleteness

I We would like to have the equivalence relation (and quotient)
generated by

(a ] b)�(f (c) ≈ g(c))

for any two arrows f : c → a, g : c → b.

I May seem arbitrary, but results in combination with all disjoint
unions an a very strong property. The category has all finite
colimits. “it is finitely cocomplete.”)



Finite cocompleteness

I We would like to have the equivalence relation (and quotient)
generated by

(a ] b)�(f (c) ≈ g(c))

for any two arrows f : c → a, g : c → b.

I May seem arbitrary, but results in combination with all disjoint
unions an a very strong property. The category has all finite
colimits. “it is finitely cocomplete.”)



The category ECB

Two results about ECB:

Theorem

With Classical Logic:

ECB is a finitely complete, finitely cocomplete, locally cartesian closed,
extensive category with a natural numbers object.

Theorem

With the axiom (ACV ) :

ECB is a locally cartesian closed arithmetic pretopos.



The category ECB

Theorem

With ECB as the category of sets, the Yoneda Lemma holds.

Corollary

For “nice” categories C it is enough to consider maps into an object to
recover that object.

Let c , d be two objects of C. If there is a natural isomorphism

C(a, c) ∼= C(a, d),

then

c ∼= d .



The category ECex

I Classical logic and choice are both rather strong demands for our
system.

I Want a way to get exactness in a way which is (more) constructive.

I Exact Completion of a finitely complete category Cex (also known as
Cex/lex ).



The category ECex

I explicit Bishop sets

I Similar to ECB but has pseudo-equivalence relations as objects
instead of equivalence relations.

I x ≈ y is no more represented as a pair 〈x , y〉 but as an arbitrary
element p of some class of proof-objects which witness the
equivalence p : x ≈ y .

I arrows are now two operations 〈f , g〉 : a→ b
A map of elements and a map of proof-objects

p : (x ≈a y) ⇒ g(p) : (f (x) ≈b f (y)).



Equivalence Relations vs. Pseudo-equivalence Relations

{〈0, 0〉, 〈1, 1〉, 〈0, 1〉, 〈1, 0〉}

{0, 1} {0, 1}
π0 π1

Is an equivalence relation setting 0 ≈ 1.

{
〈0,N, 0〉, 〈1,N, 1〉, 〈0,N, 1〉, 〈1,N, 0〉,
〈0,H, 0〉, 〈1,H, 1〉, 〈0,H, 1〉, 〈1,H, 0〉

}

{0, 1} {0, 1}
π0 π2

Is a pseudo-equivalence relation setting 0 ≈ 1.



The category ECex

Theorem

(Without any extra assumptions)

I In Explicit Mathematics: ECex is exact.

I From outside: ECex is extensive because EC is. (Menni 2000)

I From outside: ECex is a pretopos.

Conjecture

The proof for extensiveness can be internalized.

It has a “straightforward but tedious” proof.



ECex is “too well-behaved”

I The definitions of categories, functors and natural transformations
“live in ECB.”

I The Yoneda Lemma is not provable.

I Future direction: Categories enriched in explicit Bishop sets.



ECex is “too well-behaved”

I The definitions of categories, functors and natural transformations
“live in ECB.”

I The Yoneda Lemma is not provable.

I Future direction: Categories enriched in explicit Bishop sets.



Universes

I A collection closed under all interesting properties.

I This depends strongly on what one means by “interesting”.

I Category Theory and Explicit Mathematics disagree on this.



Universes in Explicit Mathematics

I A class which contains only names.

I Closed under constructions of names.

I Let u be a universe in that sense:

if a ∈̇ u and b ∈̇ u then un(a, b) ∈̇ u

If two names are contained in u then also the name of the union
directly constructed from them.

I Advantage: Very easy definition.

I Disadvantage: Not possible to close under all names of a class.



Universes in Category Theory

I Morphisms are more important than objects.

I Closure under “Categorical” constructs:

• Isomorphisms!
• Pullback: “Closure under substitution in the internal language”
• Left-, and right-adjoint to the pullback-functor: “Closure under

existence,- and forall-quantifier in the internal language”
• Should be nontrivial (Empty universes are of course closed under

everything.)

I Closure under isomorphisms is inconsistent with universes as classes.

I A categorical universe is described by a formula CU[·, ·].

CU[u, f : a→ b] :⇔ f : a→ b is in the universe u.



Universes in Category Theory

I Morphisms are more important than objects.

I Closure under “Categorical” constructs:

• Isomorphisms!

• Pullback: “Closure under substitution in the internal language”
• Left-, and right-adjoint to the pullback-functor: “Closure under

existence,- and forall-quantifier in the internal language”
• Should be nontrivial (Empty universes are of course closed under

everything.)

I Closure under isomorphisms is inconsistent with universes as classes.

I A categorical universe is described by a formula CU[·, ·].

CU[u, f : a→ b] :⇔ f : a→ b is in the universe u.



Universes in Category Theory

I Morphisms are more important than objects.

I Closure under “Categorical” constructs:

• Isomorphisms!
• Pullback: “Closure under substitution in the internal language”

• Left-, and right-adjoint to the pullback-functor: “Closure under
existence,- and forall-quantifier in the internal language”

• Should be nontrivial (Empty universes are of course closed under
everything.)

I Closure under isomorphisms is inconsistent with universes as classes.

I A categorical universe is described by a formula CU[·, ·].

CU[u, f : a→ b] :⇔ f : a→ b is in the universe u.



Universes in Category Theory

I Morphisms are more important than objects.

I Closure under “Categorical” constructs:

• Isomorphisms!
• Pullback: “Closure under substitution in the internal language”
• Left-, and right-adjoint to the pullback-functor: “Closure under

existence,- and forall-quantifier in the internal language”

• Should be nontrivial (Empty universes are of course closed under
everything.)

I Closure under isomorphisms is inconsistent with universes as classes.

I A categorical universe is described by a formula CU[·, ·].

CU[u, f : a→ b] :⇔ f : a→ b is in the universe u.



Universes in Category Theory

I Morphisms are more important than objects.

I Closure under “Categorical” constructs:

• Isomorphisms!
• Pullback: “Closure under substitution in the internal language”
• Left-, and right-adjoint to the pullback-functor: “Closure under

existence,- and forall-quantifier in the internal language”
• Should be nontrivial (Empty universes are of course closed under

everything.)

I Closure under isomorphisms is inconsistent with universes as classes.

I A categorical universe is described by a formula CU[·, ·].

CU[u, f : a→ b] :⇔ f : a→ b is in the universe u.



Universes in Category Theory

I Morphisms are more important than objects.

I Closure under “Categorical” constructs:

• Isomorphisms!
• Pullback: “Closure under substitution in the internal language”
• Left-, and right-adjoint to the pullback-functor: “Closure under

existence,- and forall-quantifier in the internal language”
• Should be nontrivial (Empty universes are of course closed under

everything.)

I Closure under isomorphisms is inconsistent with universes as classes.

I A categorical universe is described by a formula CU[·, ·].

CU[u, f : a→ b] :⇔ f : a→ b is in the universe u.



Universes: An Overview

EC Universe
uEC (A class in Explicit Math.)

ECB Universe uECB
Class of implicit Bishop sets

constructed from uEC.

“Locally small” category
C ∈̇ uEC

with uEC ∈̇ uECB

Yoneda Lemma
holds for C

Category theoretic
universe CU[uECB, ·]



Categorical Universes in ECB

It is possible to interpret CU in implicit Bishop sets (ECB).

I Suppose we are given a universe u in the sense of Explicit
Mathematics.

I We define CU[u, f : a→ b] to mean

“f is small (w.r.t. u) if and only if all its preimages are small.”

In a bit more details:

Definition

The morphism f : a→ b of implicit Bishop sets is in the universe u
if and only if

for all y ∈̇ b, the universe u contains the name of an isomorphic copy of
the preimage f −1{y}.



Categorical Universes in ECB

Two notes on the Construction:

I The universe has a weakly classifying morphism.
All arrows arise as the pullback along some (non-unique!) morphism
of the weakly classifying one.

I My construction requires the Join axiom for the proof of closure
under left-, and right-adjoints to the pullback-functor.



Thank You





A Categorical Universe

Definition
Let C be a locally cartesian closed category, el be some morphism in C and S [x ]
be a formula. We call S a universe in C if the following axioms hold.

(U1) Mor(a) ∧ Mor(f ) ∧ S [a]⇒ (PB[a, f , pr0, pr1]⇒ S [pr0])

• •

• •

g
y

h S [h]⇒ S [g ]

(UW 2) Mor(f , g) ∧ ISO[f , g ]⇒ S [f ] ∧ S [g ]

(U3) f : b → c ∧ g : a→ b ∧ S [f ] ∧ S [g ]⇒ S [Σf g ]

(U4) f : a→ i ∧ g : b → a ∧ S [f ] ∧ S [g ]⇒ S [Πf g ]

(U5) Mor(a) ∧ S [a]⇒ ∃f , pr1(f : cod(a)→ cod(el) ∧ PB[f , el , a, pr1])

• e

• u

a
y

el

∃f



A Categorical Universe in ECB

Definition (Categorical Universe of Bishop Sets)

Now we say a morphism is part of the categorical universe (CU) relative
to u if the following formula is true.

CU[f , u] :≡ ∃h, h−1∃g(∀x ∈̇ cod(f ))(g [x ] ∈̇ u

∧ (∀y ∈̇ cod(f ))(x ≈cod(f ) y ⇒ ∀z(z ∈̇ g [x ]⇔ z ∈̇ g [y ]))

(h[x ] : f −1{x} → g [x ] ∧ (∀y ∈̇ cod(f ))

(x ≈cod(f ) y ⇒ (∀z ∈̇ f −1{x})((h[x ])z ≈g [x] (h[y ])z)))

∧ h−1[x ] : g [x ]→ f −1{x} ∧ (∀y ∈̇ cod(f ))

(x ≈cod(f ) y ⇒

(∀z ∈̇ g [x ])((h−1[x ])z ≈(f−1{x}) (h−1[y ])z)))

∧ iso(h[x ], h−1[x ]))



Exactness

Definition

A finitely complete category is called exact, if every kernel pair has a
coequalizer, regular epis are stable under pullback and every congruence
is a kernel pair.

I A Congruence is an internal equivalence relation. R X × X
〈r0,r1〉

satisfying reflexivity, symmetry and transitivity.

I
R X

X X

r1

r0 f

f

is a pullback diagram for some f .

I R X Im(f )
r0

r1
is a coequalizer diagram (quotient.)



Exactness

Definition

A finitely complete category is called exact, if every kernel pair has a
coequalizer, regular epis are stable under pullback and every congruence
is a kernel pair.

I A Congruence is an internal equivalence relation. R X × X
〈r0,r1〉

satisfying reflexivity, symmetry and transitivity.

I
R X

X X

r1

r0 f

f

is a pullback diagram for some f .

I R X Im(f )
r0

r1
is a coequalizer diagram (quotient.)



Exactness

Definition

A finitely complete category is called exact, if every kernel pair has a
coequalizer, regular epis are stable under pullback and every congruence
is a kernel pair.

I A Congruence is an internal equivalence relation. R X × X
〈r0,r1〉

satisfying reflexivity, symmetry and transitivity.

I
R X

X X

r1

r0 f

f

is a pullback diagram for some f .

I R X Im(f )
r0

r1
is a coequalizer diagram (quotient.)



Congruence

Congruences can be characterized by a fife morphisms

〈r0, r1, refl , sym, tr〉 : such that R X
r0

r1
are jointly monic and

R

X X X

r0r1
refl

idXidX

R

X R X

r0r1 sym

r1r0

R ∗ R

R R R R

X X X

p
tr

r∗1r∗0

tr

r0 r0

r1

r1

r0 r1

`{x :X} R(x , x)

R(x , y) `{x :X ,y :X} R(y , x)

R(x , y) ∧ R(y , z) `{x :X ,y :X ,z:X} R(x , z)



Congruence

Congruences can be characterized by a fife morphisms

〈r0, r1, refl , sym, tr〉 : such that R X
r0

r1
are jointly monic and

R

X X X

r0r1
refl

idXidX

R

X R X

r0r1 sym

r1r0

R ∗ R

R R R R

X X X

p
tr

r∗1r∗0

tr

r0 r0

r1

r1

r0 r1

`{x :X} R(x , x)

R(x , y) `{x :X ,y :X} R(y , x)

R(x , y) ∧ R(y , z) `{x :X ,y :X ,z:X} R(x , z)



Congruence

Congruences can be characterized by a fife morphisms

〈r0, r1, refl , sym, tr〉 : such that R X
r0

r1
are jointly monic and

R

X X X

r0r1
refl

idXidX

R

X R X

r0r1 sym

r1r0

R ∗ R

R R R R

X X X

p
tr

r∗1r∗0

tr

r0 r0

r1

r1

r0 r1

`{x :X} R(x , x)

R(x , y) `{x :X ,y :X} R(y , x)

R(x , y) ∧ R(y , z) `{x :X ,y :X ,z:X} R(x , z)



Congruence

Congruences can be characterized by a fife morphisms

〈r0, r1, refl , sym, tr〉 : such that R X
r0

r1
are jointly monic and

R

X X X

r0r1
refl

idXidX

R

X R X

r0r1 sym

r1r0

R ∗ R

R R R R

X X X

p
tr

r∗1r∗0

tr

r0 r0

r1

r1

r0 r1

`{x :X} R(x , x)

R(x , y) `{x :X ,y :X} R(y , x)

R(x , y) ∧ R(y , z) `{x :X ,y :X ,z:X} R(x , z)



Congruence

Congruences can be characterized by a fife morphisms

〈r0, r1, refl , sym, tr〉 : such that R X
r0

r1
are jointly monic and

R

X X X

r0r1
refl

idXidX

R

X R X

r0r1 sym

r1r0

R ∗ R

R R R R

X X X

p
tr

r∗1r∗0

tr

r0 r0

r1

r1

r0 r1

`{x :X} R(x , x)

R(x , y) `{x :X ,y :X} R(y , x)

R(x , y) ∧ R(y , z) `{x :X ,y :X ,z:X} R(x , z)



Notation

I R⇒X is a pseudo-equivalence relation constructed from the
morphisms 〈r0, r1, reflR , symR , trR〉 with r0, r1 : R → X

I We write z : a R b for an element z ∈ R
with r0(z) = a and r1(z) = b.



Exact Completion ECex

Objects of the exact completion are pseudo-equivalence relations.
〈r0, r1, refl , sym, tr〉 with

I `{x :X} r0(refl(x)) = x ∧ r1(refl(x)) = x

I `{r :R} r0(sym(r)) = r1(r) ∧ r1(sym(r)) = r0(r)

I `{p:R∗R} r0(tr(p)) = r0(r∗0 (p)) ∧ r1(tr(p)) = r1(r∗1 (p))

Without the requirement that R X × X
〈r0,r1〉

is a mono.



Exact Completion ECex

Morphisms are given by a pair of maps 〈f , f ′〉 in EC
with si ◦ f ′ = f ◦ ri :

R S

X Y

r1r0

f ′

s1s0

f

subject to the equivalence relation
〈f , f ′〉 = 〈g , g ′〉 ⇔ (∃γ : X → S)(s0 ◦ γ = f ∧ s1 ◦ γ = g)

S

X Y

s1s0

f

g

∃γ γ(x) : f (x) S g(x)



Exact Completion ECex

Morphisms are given by a pair of maps 〈f , f ′〉 in EC
with si ◦ f ′ = f ◦ ri :

R S

X Y

r1r0

f ′

s1s0

f

subject to the equivalence relation
〈f , f ′〉 = 〈g , g ′〉 ⇔ (∃γ : X → S)(s0 ◦ γ = f ∧ s1 ◦ γ = g)

S

X Y

s1s0

f

g

∃γ γ(x) : f (x) S g(x)



Functor Γ : C → Cex

I γo(a) :≡ 〈id(a), id(a), id(a), id(a), id(a)〉

I γo(a) = a a
id(a)

id(a)

I γm(f : a→ b) :≡ 〈f , f 〉 : γo(a)→ γo(a)

a b

a b

id(a)id(a)

f

id(b)id(b)

f



Functor Γ : C → Cex

I γo(a) :≡ 〈id(a), id(a), id(a), id(a), id(a)〉

I γo(a) = a a
id(a)

id(a)

I γm(f : a→ b) :≡ 〈f , f 〉 : γo(a)→ γo(a)

a b

a b

id(a)id(a)

f

id(b)id(b)

f



“Universal Property” (???)

Probably: Equivalence of categories Exact(Cex,D) ∼ Lex(C,D). for any
exact category D.

Let 〈f , f ′〉 : (r ⇒ x)→ (s ⇒ y)

Γ(r) Γ(x) (r ⇒ x)

Γ(s) Γ(y) (s ⇒ y)

Γ(r0)

Γ(r1)

Γ(f ′)

〈id(x),reflrx〉

Γ(f ) 〈f ,f ′〉
Γ(s0)

Γ(s1) 〈id(x),reflrx〉

If G : C → D is a functor which preserves finite limits, then we can
construct

G (r) G (x) cod(coeqD(G (r0),G (r1)))

G (s) G (y) cod(coeqD(G (s0),G (s1)))

G(r0)

G(r1)

G(f ′)

coeqD(G(r0),G(r1))

G(f ) cextD(coeqD(G(s0),G(s1))◦G(f ))

G(s0)

G(s1) coeqD(G(s0),G(s1))



“Universal Property” (???)

Probably: Equivalence of categories Exact(Cex,D) ∼ Lex(C,D). for any
exact category D.
Let 〈f , f ′〉 : (r ⇒ x)→ (s ⇒ y)

Γ(r) Γ(x) (r ⇒ x)

Γ(s) Γ(y) (s ⇒ y)

Γ(r0)

Γ(r1)

Γ(f ′)

〈id(x),reflrx〉

Γ(f ) 〈f ,f ′〉
Γ(s0)

Γ(s1) 〈id(x),reflrx〉

If G : C → D is a functor which preserves finite limits, then we can
construct

G (r) G (x) cod(coeqD(G (r0),G (r1)))

G (s) G (y) cod(coeqD(G (s0),G (s1)))

G(r0)

G(r1)

G(f ′)

coeqD(G(r0),G(r1))

G(f ) cextD(coeqD(G(s0),G(s1))◦G(f ))

G(s0)

G(s1) coeqD(G(s0),G(s1))



“Universal Property” (???)

Probably: Equivalence of categories Exact(Cex,D) ∼ Lex(C,D). for any
exact category D.
Let 〈f , f ′〉 : (r ⇒ x)→ (s ⇒ y)

Γ(r) Γ(x) (r ⇒ x)

Γ(s) Γ(y) (s ⇒ y)

Γ(r0)

Γ(r1)

Γ(f ′)

〈id(x),reflrx〉

Γ(f ) 〈f ,f ′〉
Γ(s0)

Γ(s1) 〈id(x),reflrx〉

If G : C → D is a functor which preserves finite limits, then we can
construct

G (r) G (x) cod(coeqD(G (r0),G (r1)))

G (s) G (y) cod(coeqD(G (s0),G (s1)))

G(r0)

G(r1)

G(f ′)

coeqD(G(r0),G(r1))

G(f ) cextD(coeqD(G(s0),G(s1))◦G(f ))

G(s0)

G(s1) coeqD(G(s0),G(s1))



“Universal Property” (???)

Probably: Equivalence of categories Exact(Cex,D) ∼ Lex(C,D). for any
exact category D.
Let 〈f , f ′〉 : (r ⇒ x)→ (s ⇒ y)

Γ(r) Γ(x) (r ⇒ x)

Γ(s) Γ(y) (s ⇒ y)

Γ(r0)

Γ(r1)

Γ(f ′)

〈id(x),reflrx〉

Γ(f ) 〈f ,f ′〉
Γ(s0)

Γ(s1) 〈id(x),reflrx〉

If G : C → D is a functor which preserves finite limits, then we can
construct

G (r) G (x) cod(coeqD(G (r0),G (r1)))

G (s) G (y) cod(coeqD(G (s0),G (s1)))

G(r0)

G(r1)

G(f ′)

coeqD(G(r0),G(r1))

G(f ) cextD(coeqD(G(s0),G(s1))◦G(f ))

G(s0)

G(s1) coeqD(G(s0),G(s1))


