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Overview

I Motivation
I Wadge/Strong Weihrauch/Weihrauch reducibility: Several versions
I Better-quasi-orders, labeled forests
I Forests describing discontinuities of (multi-valued) functions
I Combinatorial description of an initial segment of the

topological Wadge/strong Weihrauch/Weihrauch degrees
of functions with range in a better-quasi-order
and of multi-valued functions with finite discrete range



Motivation

Goal
Describe the discontinuities appearing in computation problems in a
combinatorial way that allows us to compare them easily.

Why?
Discontinuities cause problems when computing real number functions.
I Discontinuities in

I numerical computation: instabilities.
I computational geometry: degenerate configurations.

I In Computable Analysis (Turing machine model, computing with
“finite” (rational, dyadic) approximations):

Computable functions are continuous.
Degrees of discontinuity are topological degrees of
noncomputability.



Wadge Reducibility

For subsets A,B ⊆ B := NN:

A ≤0 B :⇐⇒ (∃ cont. I : B→ B) A = I−1(B),

⇐⇒ (∃ cont. I : B→ B) (∀x ∈ B) cfA(x) = cfB(I(x)),

A is Wadge reducible to B.

Wadge (1984) characterized the Wadge degrees of all Borel subsets of
B: an almost linear structure.



Relations/Multivalued Functions
Let X ,Y be sets.
Often a computational problem can be formulated as a relation
(multivalued function) R ⊆ X × Y :

Given some x ∈ X,
compute a y ∈ Y with the property (x , y) ∈ R.

For a relation R ⊆ X × Y we define

dom(R) := {x ∈ X : (∃y ∈ Y ) (x , y) ∈ R},
R[M] := {y ∈ Y : (∃x ∈ M) (x , y) ∈ R},

for M ⊆ X . And R[x ] := R[{x}]. We define the composition S ◦ R for
relations R ⊆ X × Y , S ⊆ Y × Z as follows. For all x ∈ X

(S ◦ R)[x ] :=

{
∅ if R[x ] 6⊆ dom(S),

S[R[x ]] if R[x ] ⊆ dom(S).



Continuous Reductions Between Relations:
Naive Version

Let X ,Y ,X ′,Y ′ be topological spaces,
R ⊆ X × Y , R′ ⊆ X ′ × Y ′ be relations.

Definition

R ≤0 R′ :⇐⇒ (∃ cont. I) (∀x ∈ domR) (naive Wadge
R[x ] ⊇ R′[I(x)] ) ∅ reducibility)

R ≤1 R′ :⇐⇒ (∃ cont. I,O) (∀x ∈ domR) (naive strong Weihrauch
R[x ] ⊇ O[R′[I(x)]] ) ∅ reducibility)

R ≤2 R′ :⇐⇒ (∃ cont. I,O) (∀x ∈ domR) (naive Weihrauch
R[x ] ⊇ O[x ,R′[I(x)])] ) ∅ reducibility)



An Example
f : R2 → {0,1,2}

f (x) =


0 if (x , y) = (0,0)

1 if y = 0 ∧ x 6= 0
0 otherwise

g : R2 → {0,1,2}

g(x) =


2 if (x , y) = (0,0)

1 if y = 0 ∧ x 6= 0
0 otherwise

f ≤1 g,
g 6≤2 f .



Caveat Concerning the Naive Versions of
Continuous Reductions on Arbitrary Spaces

Often connectedness properties of the topological spaces preclude the
existence of continuous reduction functions, and this does not seem to
make sense from a computational point of view.

Suggestion:
I Do not ≤i -compare multivalued functions R,R′ directly,
I but ≤i -compare them relative to admissible representations!



Type-two Theory of Effectivity
Let X be a set. A representation of X is a surjective function
δX :⊆ B→ X .

R
X ⇒ Y

δX ↑ ↑ δY
B −→ B

realizer

A function F :⊆ B→ B is called a (δX , δY )-realizer of a relation
R ⊆ X × Y if

(∀p ∈ dom(R ◦ δX )) δY (F (p)) ∈ R[δX (p)].

In the following we shall only consider admissible (i.e. topologically
well-behaved) representations (introduced by Kreitz and Weihrauch for
countably based T0-spaces, extended by Schröder to qcb0-spaces).
A relation R ⊆ X × Y is called relatively continuous if there exists a
continuous realizer for it.



Continuous Reductions between Relations:
Full Version

Let X ,Y ,X ′,Y ′ be qcb0-spaces, R ⊆ X × Y , R′ ⊆ X ′ × Y ′ be relations.

Definition

R ≤Wa R′ :⇐⇒ R ◦ δX ≤0 R′ ◦ δX ′

⇐⇒ (∃ cont. I) (∀ realizers F ′ of R′) (Wadge
F ′ ◦ I is a realizer of R reducibility)

R ≤sW R′ :⇐⇒ δ−1
Y ◦ R ◦ δX ≤1 (δ−1

Y ′ ) ◦ R′ ◦ δX ′

⇐⇒ (∃ cont. I,O) (∀ realizers F ′ of R′) (strong Weihrauch
O ◦ F ′ ◦ I is a realizer of R reducibility)

R ≤W R′ :⇐⇒ δ−1
Y ◦ R ◦ δX ≤2 (δ−1

Y ′ ) ◦ R′ ◦ δX ′

⇐⇒ (∃ cont. I,O) (∀ realizers F ′ of R′) (Weihrauch
O ◦ (idB,F ′ ◦ I) is a realizer of R reducibility)



Well-quasi-orders and Better-quasi-orders

A relation ≤⊆ X × X is called a quasi-order if it is reflexive and
transitive.

It is called a well-quasi-order if it is a quasi-order and for every
sequence x0, x1, x2, . . . there exist i , j with i < j and xi ≤ xj .

Nash-Williams introduced a stronger notion with better closure
properties: better-quasi-orders.



Wadge Reducibility for Functions with Range in a
Quasi-order

Let X ,X ′ be topological spaces and (Y ,�) be a quasi-ordered set.
For functions f :⊆ X → Y and f ′ :⊆ X ′ → Y we define

f �0 f ′ :⇐⇒ there exists a continuous function I :⊆ X → X ′

such that (∀x ∈ dom(f )) f (x) � f ′(I(x)).

For sets X ,Y and a relation R ⊆ X × Y we define the function
FR :⊆ X → P(Y ) 6=∅ by dom(FR) := dom(R) and FR(x) := R[x ], for
x ∈ dom(R).
Consider the quasi-ordered set (P(Y )6=∅,⊇).

Lemma
Let Y be a set, let X ,X ′ be topological spaces, and let R ⊆ X × Y and
R′ ⊆ X ′ × Y be relations. TFAE:

1. R ≤0 R′,
2. FR ⊇0 FR′ .



Strong Weihrauch Reducibility and Weihrauch
Reducibility for Functions with Range in a Quasi-order
Let X ,X ′ be topological spaces.
Let (Y ,�) and (Y ′,�′) be preordered sets.
For functions f :⊆ X → Y and f ′ :⊆ X ′ → Y ′ and a monotone function
o :⊆ Y ′ → Y with upwards closed domain we define

f �o
1 f ′ :⇐⇒ f �0 o ◦ f ′,

and
f �1 f ′ :⇐⇒ there exists a monotone function o :⊆ Y ′ → Y

with upwards closed domain such that f �o
1 f ′.

f �2 f ′ :⇐⇒ there exist an equicontinuous and monotone
function o :⊆ X × Y ′ → Y with upwards closed domain
and a continuous function I :⊆ X → X ′ such that
(∀x ∈ dom(f )) f (x) � o(x , f ′(I(x)).



Forests and Trees

I A poset is a partially ordered set (P,≤), that is, a set P with a
binary relation ≤ on it that is reflexive, transitive, and
anti-symmmetric.

I A chain is a poset (P,≤) such that x ≤ y or y ≤ x , for all x , y ∈ P.
I Let N<ω be the set of all finite strings of natural numbers,

and let v be the prefix relation on N<ω.
I By a forest we mean a subset S ⊆ N<ω such that every v-chain is

finite.
I A tree is a forest that has a v-smallest element, that is, an element

x satisfying x v y for all y ∈ P.
When such an element exists then it is uniquely determined, and it
is called the root of the tree.

I A Y -labeled forest is a triple (S, λ) consisting of a forest S and a
labeling function λ : S → Y .



The ≤0-relation on Forests

Definition
Let (Y ,�) be a quasi-ordered set.

1. Let F = (S, λ) and F ′ = (S′, λ′) be labeled forests with labels in Y .
A monotone (with respect to v) function h : S → S′ satisfying

(∀s ∈ S) λ(s) � λ′(h(s))

is called a morphism from F to F ′.
2. For any labeled forests F and F ′ with labels in Y , F �0 F ′ iff there

exists a morphism from F to F ′.

The relation �0 is reflexive and transitive.
Laver has shown: If (Y ,�) is a better-quasi-ordered set then �0 is a
better-quasi-order on the set of all Y -labeled forests.
In the following we will consider equivalence classes of forests.



The ≤0-relation on Forests

Example

Two trees labeled with elements from (Y ,�) := (P(N),⊇).
A morphism from the tree on the left to the tree on the right:

{0, 1, 2}

{1, 2} {0, 2} {0, 1}

{0, 1}

{1} {0}

N

N \ {0} N \ {1} N \ {2} . . .

. . .

3

F2(FLLPO3) F2(FLLPO2)



The ≤1-relation on Forests
Let (Y �), (Y ′,�′) be quasi-ordered sets.

Definition

1. Let o :⊆ Y ′ → Y be a monotone function with upwards closed
domain. For any labeled forests F = (T , λ) ∈ Forests(Y ) and
F ′ = (T ′, λ′) ∈ Forests(Y ′),

F �o
1 F ′ :⇐⇒
there exists a monotone function h : T → T ′ such that
(∀t ∈ T ) (λ′(h(t)) ∈ dom(o) and λ(t) � o(λ′(h(t)))).

2. For any labeled forests F = (T , λ) ∈ Forests(Y ) and
F ′ = (T ′, λ′) ∈ Forests(Y ′),

F �1 F ′ :⇐⇒ there exists a . . . function o :⊆ Y ′ → Y
such that F �o

1 F ′.



The ≤1-relation on Forests

Let us call a poset weakly bounded-complete if every nonempty
bounded subset S has a supremum.

Lemma
Let (Y ,�) be a weakly bounded-complete poset, and let (Y ′,�′) be a
quasi-ordered set. Then for F = (T , λ) ∈ Forests(Y ) and
F ′ = (T ′, λ′) ∈ Forests(Y ′), TFAE:

1. F �1 F ′.
2. There exists a monotone function h : T → T ′ such that, for all

nonempty M ⊆ T , if λ′[h[M]] is �′-upper bounded then λ[M] is
�-upper bounded.

If Y ,Y ′ are finite sets and �,�′ are the equality then equivalent:

2’ There exists a monotone function h : T → T ′ such that, for all
t1, t2 ∈ T , if λ(t1) 6= λ(t2) then λ′(h(t1)) 6= λ′(h(t2)).



The ≤2-relation on Forests

Let (Y ,�) and (Y ′,�′) be quasi-ordered sets.
We call a function o :⊆ T × Y ′ → Y good if

1. (∀t ∈ T ) o(t , ·) is monotone, and its domain is upwards closed,
2. (∀t1, t2 ∈ T ) (∀y ′ ∈ Y ′), if (t1 ≤ t2 and (t1, y ′) ∈ dom(o) and

(t2, y ′) ∈ dom(o)) then o(t1, y ′) = o(t2, y ′).

Definition
For F = (T , λ) ∈ Forests(Y ) and F ′ = (T ′, λ′) ∈ Forests(Y ′),

F �2 F ′ :⇐⇒
there exist a monotone function h : T → T ′ and
a good function o :⊆ T × Y ′ → Y such that
(∀t ∈ T ) ((t , λ′(h(t)) ∈ dom(o) and λ(t) � o(t , λ′(h(t))))).



The ≤2-relation on Forests

Lemma
Let (Y ,�) be a weakly bounded-complete poset, and let (Y ′,�′) be a
quasi-ordered set. Then for F = (T , λ) ∈ Forests(Y ) and
F ′ = (T ′, λ′) ∈ Forests(Y ′) TFAE

1. F �2 F ′,
2. there exists a monotone function h : T → T ′ such that for every

subset M ⊆ T having a smallest element, if λ′[h[M]] is �′-upper
bounded then λ[M] is �-upper bounded.

If Y ,Y ′ are finite sets and �,�′ are the equality then equivalent:

2’ There exists a monotone function h : T → T ′ such that, for all
t1, t2 ∈ T , if t1 v t2 and λ(t1) 6= λ(t2) then λ′(h(t1)) 6= λ′(h(t2)).



Classes of Forests Describing the Discontinuities of
Functions

Let (Y ,�) be a quasi-ordered set. Let X be a second countable
topological space. Let CR(X ,Y ) be the set of all functions f :⊆ X → Y
with countable range. With any function f ∈ CR(X ,Y ) we associate the
following ≡0-classes Fα(f ) of labeled forests with labels in Y , for any
countable ordinal α, as well as the following ≡0-classes Tα(f , x) of
trees, for any x ∈ dom(f ) and any countable ordinal α. We define
recursively, for any countable ordinal α,

Fα(f ) := sup
�0

{Tβ(f , x) : x ∈ dom(f ), β ∈ ORD, β < α},

Tα(f , x) := treeclass
(

f (x),min
�0
{Fα(f |U) : U ⊆ X is open with x ∈ U}

)
,

for any x ∈ dom(f ).



Classes of Forests Describing the Discontinuities of
Functions: F0(f ) and T0(f , x)

Fα(f ) := sup
�0

{Tβ(f , x) : x ∈ dom(f ), β ∈ ORD, β < α},

Tα(f , x) := treeclass
(

f (x),min
�0
{Fα(f |U) : U ⊆ X is open with x ∈ U}

)
,

for any x ∈ dom(f ).

Lemma

1. The forest class F0(f ) is always defined.
It is the ≡0-class of the empty forest.

2. For all x ∈ dom(f ) the tree class T0(f , x) is defined.
It is the ≡0-class of the tree consisting of only one element, its root,
labeled with f (x).



Classes of Forests Describing the Discontinuities of
Functions: F0(f ) and T0(f , x)

Fα(f ) := sup
�0

{Tβ(f , x) : x ∈ dom(f ), β ∈ ORD, β < α},

Tα(f , x) := treeclass
(

f (x),min
�0
{Fα(f |U) : U ⊆ X is open with x ∈ U}

)
,

for any x ∈ dom(f ).

Proposition
Let (Y ,�) be a bqo set. Then, for every countable ordinal α,

1. Fα(f ) exists,
2. for every x ∈ dom(f ) the tree class Tα(f , x) exists.



Trees Describing the Discontinuities of Functions

Example

For f : {0,1}N → {2,3,5} defined by

f (p) :=


5 if p = 0ω

3 if (∃i ∈ N) p = 0i1ω

2 otherwise.

F3(f ) =

= F4(f )

[ 2 , 3 , 5 , 3 ,

2

5 ,
J
J

2






3

5

@
@

�
�

2 3 3

2

]≡0 = [

2

3

5 ]≡0



Trees Describing the Discontinuities of Functions

Example

Fix some natural number n ≥ 2.
I [n] := {0, . . . ,n − 1}.
I Let the bijection 〈·〉n : Bn → B be defined by

〈p(0), . . . ,p(n−1)〉n := p(0)
0 . . . p(n−1)

0 p(0)
1 . . . p(n−1)

1 p(0)
2 . . . p(n−1)

2 . . . ,

for p(0), . . . ,p(n−1) ∈ B.



Trees Describing the Discontinuities of Functions
Example

For any natural number n ≥ 2 let us define the relation LLPOn ⊆ B× [n]
by

dom(LLPOn) := {0ω} ∪ {p ∈ B : (∃i ∈ N) p = 0i10ω},
LLPOn[〈p(0), . . . ,p(n−1)〉n] := {i ∈ [n] : p(i) = 0ω},

for all p(0), . . . ,p(n−1) ∈ B such that 〈p(0), . . . ,p(n−1)〉n ∈ dom(LLPOn).

{0, 1, 2}

{1, 2} {0, 2} {0, 1}

{0, 1}

{1} {0}

N

N \ {0} N \ {1} N \ {2} . . .

. . .

3

F2(FLLPO3) F2(FLLPO2)



Trees Describing the Discontinuities of Functions
Example

Let Y := N ∪ {∞}, and let � be the equality relation on Y . Let
mind : B→ Y be defined by

mind (p) :=

{
min{p(i)− 1 : i ∈ N} if p 6= 0ω,
∞ if p = 0ω,

for p ∈ B.

{0, 1, 2}

{1, 2} {0, 2} {0, 1}

{0, 1}

{1} {0}

N

N \ {0} N \ {1} N \ {2} . . .

. . .

∞

0 1 2 3

0 1 2

0 1

0

. . .

. . .

3

Figure: A representant of Fω+1(mind ).



Discontinuity Forests and Admissible Representations

Proposition
Let X be a second countable T0-space with an admissible
representation ρ :⊆ B→ X. Let (Y ,�) be a better-quasi-ordered set.
Then for all countable ordinals α and all functions f :⊆ X → Y with
countable range

Fα(f ◦ ρ) = Fα(f ).



Topological Degree Structures for Functions with
Values in a Better-quasi-order

Theorem
Let X ′ be a separable metric space, let (Y ,�), (Y ′,�′) be
quasi-ordered sets, and let f :⊆ B→ Y and f ′ :⊆ X ′ → Y be functions
with countable range and α be a countable ordinal such that
Fα+1(f ) exists and Fα+1(f ) = Fα(f ) and Fα(f ′) exists.
Then, for i = 0,1,2, TFAE:

1. f �i f ′.
2. Fα(f ) �i Fα(f ′),



Topological Degree Structures for Functions with
Values in a Better-quasi-order

Theorem (H., Selivanov, Kihara/Montalban)
Let (Y ,�) be a better-quasi-ordered set. Then, for i = 0,1,2, the
following posets are isomorphic.

1. the �i -degree structure of functions f : B→ Y that are
Σ0

2-measurable with respect to the reverse Alexandroff topology on
Y and that have countable range,

2. the �i -degree structure of functions f : B→ Y that are
∆0

2-measurable with respect to the discrete topology on Y ,
3. (Forestclasses(Y ) \ {∅},�i).



Wadge Degrees
of Multivalued Functions with Finite Range

Theorem
Let X ,X ′ be second-countable T0-spaces.
Let Y be a finite set.
Let R :⊆ X ⇒ Y be a multivalued function such that there exists a
countable ordinal α such that Fα(FR) = Fα+1(FR).
Let R′ :⊆ X ′ ⇒ Y ′ be a multivalued function.
Choose F = (T , λ) ∈ Fα(FR) and F ′ = (T ′, λ′) ∈ Fα(FR′).
Then TFAE:

1. R ≤Wa R′,
2. Fα(FR) ⊇0 Fα(FR′).
3. There exists a monotone function h : T → T ′ such that for all t ∈ T ,

λ(t) ⊇ λ′(h(t)).



Topological Strong Weihrauch Degrees
of Multivalued Functions with Finite Range

Theorem
Let X ,X ′ be second-countable T0-spaces.
Let Y ,Y ′ be finite discrete spaces.
Let R :⊆ X ⇒ Y be a multivalued function such that there exists a
countable ordinal α such that Fα(FR) = Fα+1(FR).
Let R′ :⊆ X ′ ⇒ Y ′ be a multivalued function .
Choose F = (T , λ) ∈ Fα(FR) and F ′ = (T ′, λ′) ∈ Fα(FR′).
Then TFAE:

1. R ≤sW R′,
2. Fα(FR) ⊇1 Fα(FR′),
3. There exists a monotone function h : T → T ′ such that for all

nonempty M ⊆ T ,
if
⋂

m∈M λ(m) = ∅ then
⋂

m∈M λ′(h(m)) = ∅.



Topological Weihrauch Degrees
of Multivalued Functions with Finite Range

Theorem
Let X ,X ′ be second-countable T0-spaces.
Let Y ,Y ′ be finite discrete spaces.
Let R :⊆ X ⇒ Y be a multivalued function such that there exists a
countable ordinal α such that Fα(FR) = Fα+1(FR).
Let R′ :⊆ X ′ ⇒ Y ′ be a multivalued function .
Choose F = (T , λ) ∈ Fα(FR) and F ′ = (T ′, λ′) ∈ Fα(FR′).
Then TFAE:

1. R ≤W R′,
2. Fα(FR) ⊇2 Fα(FR′),
3. There exists a monotone function h : T → T ′ such that for all

nonempty M ⊆ T that have a smallest element,
if
⋂

m∈M λ(m) = ∅ then
⋂

m∈M λ′(h(m)) = ∅.



Final Comments

I We have described the topological Wadge/strong
Weihrauch/Weihrauch degrees for all ∆0

2-functions f : B→ Y (Y a
better-quasi-ordered set) and corresponding relations with finite
discrete range in a combinatorial way.
To be done: Extend this to topologically more complicated
functions f : B→ Y (following Selivanov and Kihara/Montalban)!

I So far only for functions/relations with range in a
better-quasi-ordered set or in a finite space (a smaller initial
segment also for functions with countably infinite discrete range).
To be done: Extend this to functions/relations with continuous
range!

I Is such an analysis of the discontinuities of computation problems
useful for the practice of computing?


