0

Sheaf models of type theory in type theory

Chuangjie Xu

j.w.w. Martín Escardó

Supported by the Ramsey Funds, at the University of Birmingham, UK

MCMP, LMU München

Mathematics for Computation, 8-13 May 2016, Lower Bavaria, Germany

Introduction •000	Sheaf models of type theory	Sheaf models in type theory	Summaries O
Introduction			

Motivation

- Sheaf toposes (on different sites) for studying non-classical principles, e.g. the work of Johnstone (1979), Fourman (1982), van der Hoeven and Moerdijk (1984), Esacardó and Xu (2015), and Kawai (M4C).
- ► Sheaf models of nonstandard arithmetic, *e.g.* the work of Moerdijk (1995), Palmgren (1997), Hadzihasanovic and van den Berg (2014).
- ► (Pre)sheaves as models of Martin-Löf type theory (MLTT), *e.g.* sheaf models of MLTT + nonclassical principles (or nonstandard axioms?), the cubical set model of univalence (Bezem, Coquand and Huber 2014), the presheaf model of guarded cubical type theory (Spitters *et. al.* 2016).
- ► Constructive models are expected to be formalisable within MLTT.
- ► formalising (pre)sheaf models provides formal verifications of the above.
- Development in intensional MLTT gives runnable programs computation!
- Compatibility of principles via their models.

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
OOO	0000		O
Introduction			

Exmaple (Escardó & Xu 2015)

A sheaf topos $\mathbf{Shv}(\mathbf{C}, \mathcal{J})$, similar to Johnstone's topological topos \mathscr{E}

Concrete sheaves are C-spaces (similarly, those in \mathscr{E} are limit spaces)

A C-space $X \equiv (|X|, \operatorname{Prb}(X))$ where $\operatorname{Prb}(X)$ a collection of maps $\mathbf{2}^{\mathbb{N}} \to |X|$, called probes, satisfying certain conditions preserved by the constructions of $\mathbf{2}, \mathbb{N}, \to, \times, \Pi, \Sigma$.

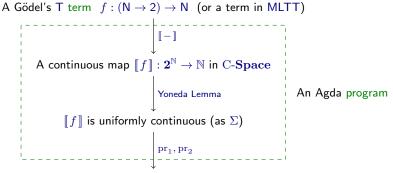
Yoneda Lemma: C-**Space** $(\mathbf{2}^{\mathbb{N}}, X) \cong Prb(X)$

The probes on $\mathbb N$ are precisely the uniformly continuous $\mathbf{2}^{\mathbb N}\to\mathbb N.$

Hence, every continuous function $2^{\mathbb{N}} \to \mathbb{N}$ in C-Space is uniformly continuous.

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000	0000	000000000000	O
Introduction			

Exmaple (Escardó & Xu 2015) (cont.)



The least modulus of uniform continuity of f

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
000●	0000	000000000000	O
Introduction			

The aims of this ongoing study

- To investigate the feasibility of developing (pre)sheaf models of MLTT with Σ-types, Π-types, identity types and universes within intensional type theory.
- ► To identify necessary extensions for the development, *e.g.* function extensionality, uniqueness of identity proofs, univalence axiom.

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000	●000	0000000000	0
Sheaf models of type theo	Y		

Category with families (CwF) (Dybjer 1995)

A base category \mathbf{C} of contexts and substitutions with a terminal object.

A functor $T: \mathbf{C}^{\mathsf{op}} \to \mathbf{Fam}$ for types, terms and their substitutions, mapping

- a context $\Gamma \in \mathbf{C}$ to a family of sets $\{\operatorname{Term}(\Gamma, A)\}_{A \in \operatorname{Type}(\Gamma)}$,
- ▶ a substitution $\sigma : \Delta \rightarrow \Gamma$ to a Fam-morphism consisting of
 - ▶ a type substitution map $(A \mapsto A[\sigma])$: Type $(\Gamma) \to$ Type (Δ)
 - a family of term substitution maps $(u \mapsto u[\sigma]) : \operatorname{Term}(\Gamma, A) \to \operatorname{Term}(\Delta, A[\sigma])$ for each $A \in \operatorname{Type}(\Gamma)$.

An operation for context comprehension

- To each context $\Gamma \in \mathbf{C}$ and type $A \in \operatorname{Type}(\Gamma)$, it associates
 - a context $\Gamma.A \in \mathbf{C}$,
 - a substitution $p: \Gamma.A \to \Gamma$,
 - ▶ a term $q \in Term(\Gamma.A, A[p])$
- ► For any substitution $\sigma : \Delta \to \Gamma$ and term $u \in \text{Term}(\Delta, A[\sigma])$, there is a unique substitution $(\sigma, u) : \Delta \to \Gamma.A$ satisfying

$$p \circ (\sigma, u) = \sigma$$
 $q[(\sigma, u)] = u.$

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000	0000	0000000000	0
Sheaf models of type theo	ry		

Example: the CwF of sets

$$\mathbf{C} := \mathbf{Set}$$

$$\operatorname{Type}(\Gamma) \ni A := \{A_{\gamma}\}_{\gamma \in \Gamma}$$

$$\operatorname{Type}(\Delta) \ni A[\sigma] := \{A_{\sigma(\delta)}\}_{\delta \in \Delta}$$

$$\operatorname{Term}(\Gamma, A) \ni u := u : \prod_{\gamma \in \Gamma} A_{\gamma}$$

$$\operatorname{Term}(\Delta, A[\sigma]) \ni u[\sigma] := u \circ \sigma : \prod_{\delta \in \Delta} A_{\sigma(\delta)}$$

$$\mathbf{Set} \ni \Gamma.A := \sum_{\gamma \in \Gamma} A_{\gamma}$$

$$p := \operatorname{pr}_{1} : \sum_{\gamma \in \Gamma} A_{\gamma} \to \Gamma$$

$$\operatorname{Term}(\Gamma.A, A[p]) \ni q := \operatorname{pr}_{2} : \prod_{w \in \sum_{\gamma \in \Gamma} A_{\gamma}} A_{\operatorname{pr}_{1}(w)}$$

$$(\sigma, u) := \lambda \delta.(\sigma(\delta), u(\delta)) : \Delta \to \sum_{\gamma \in \Gamma} A_{\gamma}$$

Sheaf models of type theory in type theory

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000	0000	0000000000	0
Sheaf models of type theory			
Shear models of type theory			

Presheaf models – CwFs of presheaves (Coquand's note)

A presheaf on a category C is a functor $C^{op} \rightarrow Set$.

For simplicity, here we consider only the presheaves on a monoid $(M, 1, \circ)$.

A presheaf on M can be represented as a set Γ equipped with an action

 $((\gamma, t) \mapsto \gamma \cdot t) : \Gamma \to \mathcal{M} \to \Gamma$

such that, for all $\gamma \in \Gamma$ and $t, r \in \mathcal{M}$

$$\gamma \cdot 1 = \gamma$$
 $(\gamma \cdot t) \cdot r = \gamma \cdot (t \circ r).$

A natural transformation of presheaves is a map $\sigma: \Delta \to \Gamma$ such that

 $\sigma(\delta) \cdot t = \sigma(\delta \cdot t)$

for all $\delta \in \Delta$ and $t \in M$.

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000	○○○●		O
Sheaf models of type theory			

Presheaf models (cont.)

Given a presheaf Γ , a type $A \in \text{Type}(\Gamma)$ is a Γ -indexed family of sets $\{A_{\gamma}\}_{\gamma \in \Gamma}$ equipped with a restriction map

$$((a,t) \mapsto a * t) : A_{\gamma} \to \prod_{t \in \mathcal{M}} A_{\gamma \cdot t}$$

for each $\gamma\in \Gamma,$ such that, for any $\gamma\in \Gamma, a\in A_\gamma$ and $t,r\in {\rm M}$

$$a * 1 = a \qquad (a * t) * r = a * (t \circ r).$$

A term $u \in \text{Term}(\Gamma, A)$ is a dependent function

$$u:\prod_{\gamma\in\Gamma}A_{\gamma}$$

such that, for all $\gamma \in \Gamma$ and $t \in \mathrm{M}$

$$u(\gamma) * t = u(\gamma \cdot t).$$

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000		••••••••	O
Sheaf models in type theory			

Some type-theoretic preliminaries

We attempt to develop the CwF of presheaves in intensional type theory, using identity types to formulate the equations of the construction.

We write a = b to denote the intensional identity type $Id_A(a, b)$, and \mathcal{U} to denote the universe of all (small) types.

For the underlying monoid, we assume the followings are given:

- ▶ a type M : U,
- ► an element 1 : M,
- ▶ an operation $_\circ_: M \to M \to M$,
- a proof $id_M : \Pi(t: M)$. $t \circ 1 = t$,
- a proof $\operatorname{id}'_{\mathrm{M}} : \Pi(t: \mathrm{M}). \ 1 \circ t = t$, and
- a proof assoc_M : $\Pi(t, r, s: M)$. $(t \circ r) \circ s = t \circ (r \circ s)$.

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000	0000	OOOOOOOOOOO	O
Sheaf models in type theory			

A native formulation of presheaves and natural transformations

The type of presheaves

 $PSh := \Sigma(\Gamma : \mathcal{U}). isPSh(\Gamma)$

where

$$\begin{split} \mathrm{isPSh}(\Gamma) &:= & \Sigma(_\cdot_:\Gamma \to \mathcal{M} \to \Gamma). \\ & (\Pi(\gamma:\Gamma).\ \gamma \cdot 1 = \gamma) \\ & \times(\Pi(\gamma:\Gamma)(t,r:\mathcal{M}).\ (\gamma \cdot t) \cdot r = \gamma \cdot (t \circ r)) \end{split}$$

The type of natural transformations of Δ, Γ : PSh

 $\operatorname{Nat}(\Delta, \Gamma) := \Sigma(\sigma : \Delta \to \Gamma). \ \Pi(\delta : \Delta)(t : M). \ (\sigma\delta) \cdot t = \sigma(\delta \cdot t)$

Introduction 0000	Sheaf models of type theory	Sheaf models in type theory	Summaries O
Sheaf models in type theory			

A problematic formulation of types

Given Γ : PSh,

Type(
$$\Gamma$$
) := $\Sigma(A : \Gamma \to \mathcal{U})$. isType(A)

where

$$\begin{aligned} \operatorname{isType}(A) &:= \Sigma(_*_:\Pi\{\gamma:\Gamma\}. \ A_{\gamma} \to \Pi(t: \operatorname{M}).A_{\gamma\cdot t}). \\ &\quad (\Pi(\gamma:\Gamma)(a:A_{\gamma}). \ a*1=a) \\ &\quad \times (\Pi(\gamma:\Gamma)(a:A_{\gamma})(t,r:\operatorname{M}). \ (a*t)*r = \gamma*(t\circ r)) \end{aligned}$$

This does not type-check!

For instance, we can't form a*1=a because $a*1:A_{\gamma\cdot 1}$ and $a:A_{\gamma}$ have different types.

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000	0000	000●00000000	O
Sheaf models in type theory			

More type-theoretic preliminaries

To make it type-check, we transport the element in one side of the equation, using

```
transport(p, -): P(a) \to P(b)
```

where $P: A \rightarrow \mathcal{U}$ and p: a = b.

Given Γ : PSh, we have two witnesses

 $\mathrm{id}_{\Gamma}: \Pi(\gamma; \Gamma). \ \gamma \cdot 1 = 1$ $\mathrm{assoc}_{\Gamma}: \Pi(\gamma; \Gamma)(t, r; \mathrm{M}). \ (\gamma \cdot t) \cdot r = \gamma \cdot (t \circ r)$

Then the two equations in isType can be formulated as

$$a * 1 = {}^{\mathrm{id}_{\Gamma}(\gamma)} a \qquad (a * t) * r = {}^{\mathrm{assoc}_{\Gamma}(\gamma, t, r)} a * (t \circ r)$$

where we write $x =^{p} y$ to denote transport(p, x) = y.

Introduction 0000	Sheaf models of type theory 0000	Sheaf models in type theory	O
Sheaf models in type theory			

A less problematic formulation

Given Γ : PSh,

$$Type(\Gamma) := \Sigma(A : \Gamma \to \mathcal{U}). \text{ is}Type(A)$$

where

$$\begin{split} \operatorname{isType}(A) &:= \Sigma(_*_:\Pi\{\gamma:\Gamma\}.\ A_{\gamma} \to \Pi(t:\operatorname{M}).A_{\gamma\cdot t}). \\ & (\Pi(\gamma:\Gamma)(a:A_{\gamma}).\ a*1 =^{\operatorname{id}_{\Gamma}} a) \\ & \times (\Pi(\gamma:\Gamma)(a:A_{\gamma})(t,r:\operatorname{M}).\ (a*t)*r =^{\operatorname{assoc}_{\Gamma}(\gamma,t,r)} \gamma*(t\circ r)) \end{split}$$

Given $A : Type(\Gamma)$, we get two witnesses

 $\operatorname{id}_{A}: \Pi(\gamma:\Gamma)(a:A_{\gamma}). \ a*1 =^{\operatorname{id}_{\Gamma}} a$ $\operatorname{assoc}_{A}: \Pi(\gamma:\Gamma)(a:A_{\gamma})(t,r:M). \ (a*t)*r =^{\operatorname{assoc}_{\Gamma}(\gamma,t,r)} \gamma*(t\circ r)$

Introduction 0000	Sheaf models of type theory 0000	Sheaf models in type theory	Summaries O
Sheaf models in type theory			

A problem in type substitutions

Given $A : \operatorname{Type}(\Gamma)$ and $\sigma : \operatorname{Nat}(\Delta, \Gamma)$, the substituted type $A[\sigma] : \operatorname{Type}(\Delta)$ is given by the type family $A[\sigma] : \Delta \to \mathcal{U}$ defined by, for $\delta : \Delta$,

 $A[\sigma]_{\delta} := A_{\sigma(\delta)}.$

Given $a: A[\sigma]_{\delta}$ and t: M, we can't simply define

 $a *_{A[\sigma]} t : A_{\sigma(\delta \cdot t)}$

to be $a *_A t : A_{(\sigma\delta) \cdot t}$. But we can transport it

 $a *_{A[\sigma]} t := \operatorname{transport}(\operatorname{nat}_{\sigma}(\delta, t), a *_A t)$

where $\operatorname{nat}_{\sigma} : \Pi(\delta : \Delta)(t: M). \ (\sigma\delta) \cdot t = \sigma(\delta \cdot t).$

Introduction	Sheaf models of type theory 0000	Sheaf models in type theory	Summaries
0000		000000●00000	O
Sheaf models in type theory			

A problem in type substitutions (cont.)

It remains to construct $id_{A[\sigma]}$ and $assoc_{A[\sigma]}$, which is impossible without further adjustments.

For instance, the type of $id_{A[\sigma]}(\delta, a)$ is expanded to

transport($\operatorname{nat}_{\sigma}(\delta, 1) \bullet \operatorname{ap}(\sigma, \operatorname{id}_{\Delta}(\delta)), a *_A 1$) = a

where $p \bullet q : x = z$ is the concatenation of p : x = y and q : y = z, and ap(f, p) : fx = fy applies the map f to p : x = y.

We only have

 $\mathrm{id}_A(\sigma\delta, a) : \mathrm{transport}(\mathrm{id}_\Gamma(\sigma\delta), a *_A 1) = a$

but we cannot prove

$$\operatorname{nat}_{\sigma}(\delta, 1) \bullet \operatorname{ap}(\sigma, \operatorname{id}_{\Delta}(\delta)) = \operatorname{id}_{\Gamma}(\sigma\delta).$$

Introduction	Sheaf models of type theory OOOO	Sheaf models in type theory	Summaries
0000		0000000●00000	O
Sheaf models in type theory			

First attempt – restricting natural transformations

To construct $\operatorname{id}_{A[\sigma]}$, we need

 $E_{\mathrm{id}}(\mathrm{nat}_{\sigma}) := \Pi(\delta : \Delta). \ \mathrm{nat}_{\sigma}(\delta, 1) \bullet \mathrm{ap}(\sigma, \mathrm{id}_{\Delta}(\delta)) = \mathrm{id}_{\Gamma}(\sigma\delta)$

(and, similarly, an $E_{\text{assoc}}(\text{nat}_{\sigma})$ for constructing $\operatorname{assoc}_{A[\sigma]}$).

We attempt to refine natural transformations by

 $\begin{array}{rcl} \operatorname{Nat}(\Delta,\Gamma) &:= & \Sigma(\sigma:\Delta\to\Gamma).\\ & & \Sigma(\operatorname{nat}_{\sigma}:\Pi(\delta:\Delta)(t:\operatorname{M}).\;(\sigma\delta)\cdot t = \sigma(\delta\cdot t)).\\ & & & E_{\operatorname{id}}(\operatorname{nat}_{\sigma}) \times E_{\operatorname{assoc}}(\operatorname{nat}_{\sigma}) \end{array}$

But it introduces new problems: we can't prove

$$\sigma \circ 1 = \sigma \qquad (\sigma \circ \tau) \circ \nu = \sigma \circ (\tau \circ \nu)$$

because there is no reason why one can have e.g. $E_{id}(nat_{\sigma \circ 1}) = E_{id}(nat_{\sigma})$.

Introduction	Sheaf models of type theory 0000	Sheaf models in type theory	Summaries
0000		○○○○○○○●○○○	O
Sheaf models in type theory			

Second attempt – restricting presheaves

A type $A : \mathcal{U}$ is a set if

 $isSet(A) := \Pi(x, y : A)(p, q : x = y). \ p = q.$

We refine the formulations by

$$\begin{split} \mathrm{PSh} &:= & \Sigma(\Gamma : \mathcal{U}). \ \mathrm{isSet}(\Gamma) \times \mathrm{isPSh}(\Gamma) \\ \mathrm{Type}(\Gamma) &:= & \Sigma(A : \Gamma \to \mathcal{U}). \ (\Pi(\gamma : \Gamma). \ \mathrm{isSet}(A_{\gamma})) \times \mathrm{isType}(A) \end{split}$$

We need function extensionality (available in Cubical TT) to show that the underlying type family of a Π -type in the CwF of presheaves is set-valued.

But we can't construct universes of presheaves, because ${\mathcal U}$ is not a set.

We can also work with UIP or Streicher's K-axiom (available in Agda).

Sheaf models in type theor	у		
0000	0000	000000000000	0
Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries

Third attempt – using setoids

Use equivalence relations to formulate the equations.

Equivalence relations has to be proposition-valued. Otherwise, again we cannot construct $id_{A[\sigma]}$ and $assoc_{A[\sigma]}$.

But we still cannot construct universes of presheaves, because the equivalence relation on \mathcal{U} is isomorphism which is not proposition-valued.

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000		○○○○○○○○●○	O
Sheaf models in type theory			

Universes in presheaf models

The monoid M is also a presheaf. We define the universe $U \in Type(\Gamma)$ by

 $U_{\gamma} := Type(M)$

for all $\gamma \in \Gamma$. Given $T \in U_{\gamma}$ and $t \in M$, we define

 $(T * t)r := T_{t \circ r}.$

for any $r \in M$.

Type(M) consists of families $T: M \to \mathcal{U}$ satisfying certain condition (formulated as a Σ -type). We cannot prove that Type(M) is a set, because we cannot prove \mathcal{U} (or the subuniverse of sets) to be a set, unless we assume K-axiom.

Truncating Type(M) to a set $\|Type(M)\|_0$ does not work; otherwise, the decoding operation $EL : Term(\Gamma, U) \to Type(\Gamma)$ will be able to turn sets back to types.

Introduction	Sheaf models of type theory 0000	Sheaf models in type theory	Summaries
0000		000000000●	O
Sheaf models in type theory			

Universers in sheaf models

A coverage ${\cal J}$ on a monoid M is a collection of subsets of M, called the covering families, satisfying the coverage axiom:

for any $I \in \mathcal{J}$ and $t \in M$, there exists a $J \in \mathcal{J}$ such that for each $j \in J$ there are $i \in I$ and $r \in M$ such that $t \circ j = i \circ r$.

A presheaf Γ is a sheaf on (M,\mathcal{J}) if it satisfies the sheaf condition:

for any $I \in \mathcal{J}$ and any compatible family of elements $\{\gamma_i \in \Gamma \mid i \in I\}$ there exists a unique amalgamation $\gamma \in \Gamma$ such that $\gamma \cdot i = \gamma_i$ for all $i \in I$.

We need to add a (dependent) sheaf condition to the definition of types in the CwF of sheaves.

When verifying the sheaf condition of the universe, we can only show that the amalgamation of a family of elements in Type(M) is unique up to (pointwise) isomorphism.

```
So we need (a weaker form of) the univalence axiom (UA)? But UA is inconsistent with K!
```

Introduction	Sheaf models of type theory	Sheaf models in type theory	Summaries
0000	0000	000000000000	●
Summaries			

Summaries

- Developing (pre)sheaf models in intensional type theory (ITT) directly gives us correctness and computation.
- In ITT + FunExt, one can develop the CwF of (pre)sheaves without universes.
- ► In ITT + K, one can develop the CwF of presheaves with universes.
- Using setoids does not help too much.
- ► The construction of universes in the CwF of sheaves needs both K and UA which are inconsistent.