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Introduction

Motivation

I Sheaf toposes (on different sites) for studying non-classical principles,

e.g. the work of Johnstone (1979), Fourman (1982), van der Hoeven and
Moerdijk (1984), Esacardó and Xu (2015), and Kawai (M4C).

I Sheaf models of nonstandard arithmetic, e.g. the work of Moerdijk (1995),
Palmgren (1997), Hadzihasanovic and van den Berg (2014).

I (Pre)sheaves as models of Martin-Löf type theory (MLTT), e.g.

sheaf models of MLTT + nonclassical principles (or nonstandard axioms?),
the cubical set model of univalence (Bezem, Coquand and Huber 2014),
the presheaf model of guarded cubical type theory (Spitters et. al. 2016).

I Constructive models are expected to be formalisable within MLTT.

I formalising (pre)sheaf models provides formal verifications of the above.

I Development in intensional MLTT gives runnable programs – computation!

I Compatibility of principles via their models.

Sheaf models of type theory in type theory MCMP, LMU München



Introduction Sheaf models of type theory Sheaf models in type theory Summaries

Introduction

Exmaple (Escardó & Xu 2015)

A sheaf topos Shv(C,J ), similar to Johnstone’s topological topos E

Concrete sheaves are C-spaces (similarly, those in E are limit spaces)

A C-space X ≡ (|X|,Prb(X)) where Prb(X) a collection of maps 2N → |X|,
called probes, satisfying certain conditions preserved by the constructions of
2, N, →, ×, Π, Σ.

Yoneda Lemma: C-Space(2N, X) ∼= Prb(X)

The probes on N are precisely the uniformly continuous 2N → N.

Hence, every continuous function 2N → N in C-Space is uniformly continuous.
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Exmaple (Escardó & Xu 2015) (cont.)

A Gödel’s T term f : (N→ 2)→ N (or a term in MLTT)

A continuous map [[f ]] : 2N → N in C-Space

[[− ]]

[[f ]] is uniformly continuous (as Σ)

Yoneda Lemma

The least modulus of uniform continuity of f

pr1, pr2

An Agda program
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Introduction

The aims of this ongoing study

I To investigate the feasibility of developing (pre)sheaf models of MLTT
with Σ-types, Π-types, identity types and universes within intensional type
theory.

I To identify necessary extensions for the development, e.g. function
extensionality, uniqueness of identity proofs, univalence axiom.
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Sheaf models of type theory

Category with families (CwF) (Dybjer 1995)

A base category C of contexts and substitutions with a terminal object.

A functor T : Cop → Fam for types, terms and their substitutions, mapping

I a context Γ ∈ C to a family of sets {Term(Γ,A)}A∈Type(Γ),

I a substitution σ : ∆→ Γ to a Fam-morphism consisting of
I a type substitution map (A 7→ A[σ]) : Type(Γ) → Type(∆)
I a family of term substitution maps

(u 7→ u[σ]) : Term(Γ, A) → Term(∆, A[σ]) for each A ∈ Type(Γ).

An operation for context comprehension
I To each context Γ ∈ C and type A ∈ Type(Γ), it associates

I a context Γ.A ∈ C,
I a substitution p : Γ.A→ Γ,
I a term q ∈ Term(Γ.A,A[p])

I For any substitution σ : ∆→ Γ and term u ∈ Term(∆, A[σ]), there is a
unique substitution (σ, u) : ∆→ Γ.A satisfying

p ◦(σ, u) = σ q[(σ, u)] = u.
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Sheaf models of type theory

Example: the CwF of sets

C := Set

Type(Γ) 3 A := {Aγ}γ∈Γ

Type(∆) 3 A[σ] := {Aσ(δ)}δ∈∆

Term(Γ, A) 3 u := u :
∏
γ∈Γ Aγ

Term(∆, A[σ]) 3 u[σ] := u ◦ σ :
∏
δ∈∆ Aσ(δ)

Set 3 Γ.A :=
∑
γ∈Γ Aγ

p := pr1 :
∑
γ∈Γ Aγ → Γ

Term(Γ.A,A[p]) 3 q := pr2 :
∏
w∈

∑
γ∈Γ Aγ

Apr1(w)

(σ, u) := λδ.(σ(δ), u(δ)) : ∆→
∑
γ∈Γ Aγ
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Sheaf models of type theory

Presheaf models – CwFs of presheaves (Coquand’s note)

A presheaf on a category C is a functor Cop → Set.

For simplicity, here we consider only the presheaves on a monoid (M, 1, ◦).

A presheaf on M can be represented as a set Γ equipped with an action

((γ, t) 7→ γ · t) : Γ→ M→ Γ

such that, for all γ ∈ Γ and t, r ∈ M

γ · 1 = γ (γ · t) · r = γ · (t ◦ r).

A natural transformation of presheaves is a map σ : ∆→ Γ such that

σ(δ) · t = σ(δ · t)

for all δ ∈ ∆ and t ∈ M.
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Sheaf models of type theory

Presheaf models (cont.)

Given a presheaf Γ, a type A ∈ Type(Γ) is a Γ-indexed family of sets {Aγ}γ∈Γ

equipped with a restriction map

((a, t) 7→ a ∗ t) : Aγ →
∏
t∈M

Aγ·t

for each γ ∈ Γ, such that, for any γ ∈ Γ, a ∈ Aγ and t, r ∈ M

a ∗ 1 = a (a ∗ t) ∗ r = a ∗ (t ◦ r).

A term u ∈ Term(Γ, A) is a dependent function

u :
∏
γ∈Γ

Aγ

such that, for all γ ∈ Γ and t ∈ M

u(γ) ∗ t = u(γ · t).
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Sheaf models in type theory

Some type-theoretic preliminaries

We attempt to develop the CwF of presheaves in intensional type theory,
using identity types to formulate the equations of the construction.

We write a = b to denote the intensional identity type IdA(a, b),
and U to denote the universe of all (small) types.

For the underlying monoid, we assume the followings are given:

I a type M : U ,

I an element 1 : M,

I an operation ◦ : M→ M→ M,

I a proof idM : Π(t : M). t ◦ 1 = t,

I a proof id′M : Π(t : M). 1 ◦ t = t, and

I a proof assocM : Π(t, r, s : M). (t ◦ r) ◦ s = t ◦ (r ◦ s).
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Sheaf models in type theory

A native formulation of presheaves and natural transformations

The type of presheaves

PSh := Σ(Γ : U). isPSh(Γ)

where

isPSh(Γ) := Σ( · : Γ→M→Γ).

(Π(γ :Γ). γ · 1 = γ)

×(Π(γ :Γ)(t, r : M). (γ · t) · r = γ · (t ◦ r))

The type of natural transformations of ∆,Γ : PSh

Nat(∆,Γ) := Σ(σ : ∆→ Γ). Π(δ :∆)(t : M). (σδ) · t = σ(δ · t)
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A problematic formulation of types

Given Γ : PSh,

Type(Γ) := Σ(A : Γ→ U). isType(A)

where

isType(A) := Σ( ∗ : Π{γ :Γ}. Aγ→Π(t : M).Aγ·t).

(Π(γ :Γ)(a :Aγ). a ∗ 1 = a)

×(Π(γ :Γ)(a :Aγ)(t, r : M). (a ∗ t) ∗ r = γ ∗ (t ◦ r))

This does not type-check!

For instance, we can’t form a ∗ 1 = a because a ∗ 1 : Aγ·1 and a : Aγ have
different types.
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Sheaf models in type theory

More type-theoretic preliminaries

To make it type-check, we transport the element in one side of the equation,
using

transport(p, -) : P (a)→ P (b)

where P : A→ U and p : a = b.

Given Γ : PSh, we have two witnesses

idΓ : Π(γ :Γ). γ · 1 = 1 assocΓ : Π(γ :Γ)(t, r : M). (γ · t) · r = γ · (t ◦ r)

Then the two equations in isType can be formulated as

a ∗ 1 =idΓ(γ) a (a ∗ t) ∗ r =assocΓ(γ,t,r) a ∗ (t ◦ r)

where we write x =p y to denote transport(p, x) = y.

Sheaf models of type theory in type theory MCMP, LMU München



Introduction Sheaf models of type theory Sheaf models in type theory Summaries

Sheaf models in type theory

A less problematic formulation

Given Γ : PSh,

Type(Γ) := Σ(A : Γ→ U). isType(A)

where

isType(A) := Σ( ∗ : Π{γ :Γ}. Aγ→Π(t : M).Aγ·t).

(Π(γ :Γ)(a :Aγ). a ∗ 1 =idΓ a)

×(Π(γ :Γ)(a :Aγ)(t, r : M). (a ∗ t) ∗ r =assocΓ(γ,t,r) γ ∗ (t ◦ r))

Given A : Type(Γ), we get two witnesses

idA : Π(γ :Γ)(a :Aγ). a ∗ 1 =idΓ a

assocA : Π(γ :Γ)(a :Aγ)(t, r : M). (a ∗ t) ∗ r =assocΓ(γ,t,r) γ ∗ (t ◦ r)
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A problem in type substitutions

Given A : Type(Γ) and σ : Nat(∆,Γ), the substituted type A[σ] : Type(∆) is
given by the type family A[σ] : ∆→ U defined by, for δ : ∆,

A[σ]δ := Aσ(δ).

Given a : A[σ]δ and t : M, we can’t simply define

a ∗A[σ] t : Aσ(δ·t)

to be a ∗A t : A(σδ)·t.
But we can transport it

a ∗A[σ] t := transport(natσ(δ, t), a ∗A t)

where natσ : Π(δ :∆)(t : M). (σδ) · t = σ(δ · t).
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A problem in type substitutions (cont.)

It remains to construct idA[σ] and assocA[σ], which is impossible without
further adjustments.

For instance, the type of idA[σ](δ, a) is expanded to

transport(natσ(δ, 1) • ap(σ, id∆(δ)), a ∗A 1) = a

where p • q : x = z is the concatenation of p : x = y and q : y = z,
and ap(f, p) : fx = fy applies the map f to p : x = y.

We only have

idA(σδ, a) : transport(idΓ(σδ), a ∗A 1) = a

but we cannot prove

natσ(δ, 1) • ap(σ, id∆(δ)) = idΓ(σδ).
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Sheaf models in type theory

First attempt – restricting natural transformations

To construct idA[σ], we need

Eid(natσ) := Π(δ : ∆). natσ(δ, 1) • ap(σ, id∆(δ)) = idΓ(σδ)

(and, similarly, an Eassoc(natσ) for constructing assocA[σ]).

We attempt to refine natural transformations by

Nat(∆,Γ) := Σ(σ : ∆→ Γ).
Σ(natσ : Π(δ :∆)(t : M). (σδ) · t = σ(δ · t)).
Eid(natσ)× Eassoc(natσ)

But it introduces new problems: we can’t prove

σ ◦ 1 = σ (σ ◦ τ) ◦ ν = σ ◦ (τ ◦ ν)

because there is no reason why one can have e.g. Eid(natσ◦1) = Eid(natσ).
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Second attempt – restricting presheaves

A type A : U is a set if

isSet(A) := Π(x, y : A)(p, q : x = y). p = q.

We refine the formulations by

PSh := Σ(Γ : U). isSet(Γ)× isPSh(Γ)

Type(Γ) := Σ(A : Γ→ U). (Π(γ :Γ). isSet(Aγ))× isType(A)

We need function extensionality (available in Cubical TT) to show that the
underlying type family of a Π-type in the CwF of presheaves is set-valued.

But we can’t construct universes of presheaves, because U is not a set.

We can also work with UIP or Streicher’s K-axiom (available in Agda).
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Third attempt – using setoids

Use equivalence relations to formulate the equations.

Equivalence relations has to be proposition-valued. Otherwise, again we cannot
construct idA[σ] and assocA[σ].

But we still cannot construct universes of presheaves, because the equivalence
relation on U is isomorphism which is not proposition-valued.
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Universes in presheaf models

The monoid M is also a presheaf. We define the universe U ∈ Type(Γ) by

Uγ := Type(M)

for all γ ∈ Γ. Given T ∈ Uγ and t ∈ M, we define

(T ∗ t)r := Tt◦r.

for any r ∈ M.

Type(M) consists of families T : M→ U satisfying certain condition
(formulated as a Σ-type). We cannot prove that Type(M) is a set, because we
cannot prove U (or the subuniverse of sets) to be a set, unless we assume
K-axiom.

Truncating Type(M) to a set ‖Type(M)‖0 does not work; otherwise, the
decoding operation EL : Term(Γ,U)→ Type(Γ) will be able to turn sets back
to types.
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Universers in sheaf models

A coverage J on a monoid M is a collection of subsets of M, called the
covering families, satisfying the coverage axiom:

for any I ∈ J and t ∈ M, there exists a J ∈ J such that for each j ∈ J there
are i ∈ I and r ∈ M such that t ◦ j = i ◦ r.

A presheaf Γ is a sheaf on (M,J ) if it satisfies the sheaf condition:

for any I ∈ J and any compatible family of elements {γi ∈ Γ | i ∈ I} there
exists a unique amalgamation γ ∈ Γ such that γ · i = γi for all i ∈ I.

We need to add a (dependent) sheaf condition to the definition of types in the
CwF of sheaves.

When verifying the sheaf condition of the universe, we can only show that the
amalgamation of a family of elements in Type(M) is unique up to (pointwise)
isomorphism.

So we need (a weaker form of) the univalence axiom (UA)?

But UA is inconsistent with K!
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Summaries

Summaries

I Developing (pre)sheaf models in intensional type theory (ITT) directly
gives us correctness and computation.

I In ITT + FunExt, one can develop the CwF of (pre)sheaves
without universes.

I In ITT + K, one can develop the CwF of presheaves with universes.

I Using setoids does not help too much.

I The construction of universes in the CwF of sheaves needs both K and UA
which are inconsistent.
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