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Background

A short introduction to Martin-Löf type theory

A foundation for constructive math, based on the Curry-Howard correspondence

First order logic Dependent type theory

⊥ ∼= 0

> ∼= 1

P ∧Q ∼= P ×Q
P ∨Q ∼= P +Q

P ⇒ Q ∼= P → Q

∀(x :A).P (x) ∼= Π(x :A).P (x) (dependent function)

∃(x :A).P (x) ∼= Σ(x :A).P (x) (dependent pair)

a = b ∼= IdA(a, b) (identity type)

Axiom of choice?

Π(x :X).Σ(y :Y ).A(x, y)→ Σ(f :X→Y ).Π(x :X).A(x, fx)
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Background

MLTT as a foundation: good or bad?

Intensional MLTT has good computational features (e.g. decidable
type-checking, terminating normalisation, canonicity) and hence

I it can be regarded as a dependently typed programming language, and

I the design of a number of proof assistants and programming languages is
based on certain variants of MLTT, including Agda, Coq and Lean.

However, certain difficulties arise in such type-theoretic development of math
due to

I the presence of Proof Relevance (e.g. subsets/subtypes),

I the absence of Function Extensionality (funext)

Π(X :U)(Y : X→U)(f, g :Π(x :X).Y (x)). (Π(x :X).fx = gx)→ f = g.
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Background

In this talk

I will use my thesis

A continuous computational interpretation of type theories,
doctoral dissertation, the University of Birmingham, 2015.

as an example to

I illustrate the difficulties of formalising math in MLTT,

I discuss some approaches to address the related issues, and

I execute some examples in Agda with (funext) used non-computationally
and computationally.
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A constructive model of uniform continuity

Uniform continuity of functions 2N → N

∀(f : 2N → N). ∃(n : N). ∀(α, β : 2N). α =n β ⇒ f(α) = f(β)

I A finite prefix of an input of f is enough to compute the output.

I Not provable but consistent in HAω,

validated by the topological topos (using classical logic or other axioms).

I Its Curry–Howard interpretation

Π(f : 2N → N). Σ(n : N). Π(α, β : 2N). α =n β → f(α) = f(β)

is also consistent in MLTT.

I We have a constructive variation of the topological topos. The concrete
objects in this model are called C-spaces (analogous to limit spaces).
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A constructive model of uniform continuity

C-spaces and continuous maps

Def. A C-topology on a set X is a collection P of probes 2N → X subject to
the following probe axioms:

1. All constant maps are in P .

2. If t : 2N → 2N is uniformly continuous and p ∈ P , then p ◦ t ∈ P .

3. For any two maps p0, p1 ∈ P , the unique map p : 2N → X defined by
p(i ∗ α) = pi(α) is in P .

A C-space is a set X equipped with C-topology.

A function f : X → Y of C-spaces is continuous if f ◦ p ∈ PY whenever
p ∈ PX .

Example: All continuous maps from 2N (with the usual topology) to any
topological space X form a C-topology on X. Any continuous map of
topological spaces is continuous w.r.t. the above C-topology.
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A constructive model of uniform continuity

Discrete C-spaces

Def. A map p : 2N → X into a set X is called locally constant iff
∃(n : N). ∀(α, β : 2N). α =n β ⇒ f(α) = f(β).

Lemma
The locally constant maps 2N → X form a C-topology which has the smallest
amount of probes on X.

Def. A C-space X is discrete if all functions X → Y into any C-space Y are
continuous.

Lemma
A C-space is discrete iff its probes are precisely the locally constant functions.

Def. We thus refer to the collection of all locally constant maps 2N → X as
the discrete C-topology on X.

• The discrete C-topology on 2 or N is the set of uniformly continuous maps.

• The discrete space 2 is the coproduct of two copies of the terminal space.

• The discrete space N is the natural numbers object.
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A constructive model of uniform continuity

Yoneda Lemma and Fan functional

The monoid C of uniformly continuous 2N → 2N is a C-topology on 2N.

(2N,C) = the exponential of the two discrete C-spaces

The Yoneda Lemma says that a map 2N → X into a C-space X is a probe iff it
is continuous in the sense of the category of C-spaces.

Lemma
The exponential N2N

is a discrete C-space.

Theorem
There is a continuous functional fan: N2N

→ N that calculates (minimal)
moduli of uniform continuity.
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A constructive model of uniform continuity

Modelling uniform continuity

C-spaces provide a model of system T and dependent types:

1. Cartesian closed structure — simply typed λ-calculus.

2. Locally cartesian closed structure — dependent types.

3. Natural numbers object — base type and primitive recursion principle.

Theorem
The uniform continuity axiom

∀(f : 2N → N). ∃(n : N). ∀(α, β : 2N). α =n β ⇒ f(α) = f(β)

is validated by the fan functional.
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A constructive model of uniform continuity

Computing moduli of uniform continuity

A Gödel’s T term f : (N→ 2)→ N (or a term in MLTT)

A continuous map [[f ]] : 2N → N in C-Space

[[− ]]

[[f ]] is uniformly continuous (as Σ)

Yoneda Lemma

The least modulus of uniform continuity of f

pr1, pr2

An Agda program
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Construction in type theory

A naive formulation of C-spaces

I Define a type family C: (2N → 2N)→ U by

C(t) :≡ Π(m :N). Σ(n :N). Π(α, β :2N). α =n β → t(α) =m t(β)

and write t ∈ C to denote C(t).

I Given X : U and P : (2N → X)→ U , define probe-axioms(X,P ) to be

(Π(x :X). λα.x ∈ P )
× (Π(p : 2N → X). p ∈ P → Π(t : 2N → 2N). t ∈ C→ p ◦ t ∈ P )
× (Π(p : 2N → X). (Σ(n :N). Π(s :2n). p ◦ conss ∈ P )→ p ∈ P )

I Define the type of C-spaces by

Space :≡ Σ(X :U). Σ(P : (2N → X)→ U). probe-axioms(X,P ).
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Construction in type theory

Problems due to the absence of function extensionality

Working with this formulation of C-spaces, some problems occur in the
constructions of the following:

1. discrete C-spaces,

2. exponentials of C-spaces, and

3. the fan functional.

All of them are related to the fact that function extensionality (funext)

Π(X :U)(Y : X→U)(f, g :Π(x :X).Y (x)). (Π(x :X).fx = gx)→ f = g

is not available in intensional Martin-Löf type theory.

The issues of (1) and (2) arise in the verifications of sheaf condition, which rely
on the equation

cons (take n α) (drop n α) = α.

But it holds only up to pointwise equality.
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Construction in type theory

Problems due to the presence of proof relevance

Function extensionality is needed, but insufficient to construct (3) the fan
functional, because type theory is proof-relevant.

When showing that the domain N2N

of the fan functional is a discrete C-space

(i.e. any probe 2N → N2N

is locally constant), we need to prove equality of
uniform-continuity witnesses of maps 2N → N. But there could be many
uniform-continuity witnesses for a given map 2N → N.

We refine uniform continuity to mean that there exists a minimal modulus:

UC(f) :≡ Σmin(m :N). Π(α, β :2N). α =m β → f(α) = f(β)

which becomes a proposition (that is a type with at most one element).

If two uniformly continuous maps are pointwise equal, then they have the same
minimal modulus and yield the same morphism in the category of C-spaces.
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Construction in type theory

To address the issues

We developed a few approaches:

1. Postulate (funext)

2. Use setoids

3. Add a probe axiom

4. Postulate (funext) in a computationally irrelevant field

5. Postulate the double negation of (funext)

6. Porting the development from MLTT to Cubical Type Theory

All of them have been implemented in Agda.
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Construction in type theory

Construction by postulating (funext)

This is of course the easiest approach.

It gives a clean formalization of our informal development.

But we lose computational content:

Our Agda implementation can compute the modulus of uniform continuity of
the constant map

λα.2.

But it can’t compute the one of

λα. if true 2 2.

The normal form of its modulus produced by Agda has more than 200 lines
(before my recent improvement it was more than 300 lines).
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Construction in type theory

Construction by using setoids

Main adjustments:

I Any uniformly continuous map t : 2N → 2N is extensional, i.e. satisfying

Π(α, β :2N). (Π(i :N).αi = βi)→ Π(i :N).(tα)i = (tβ)i.

I A C-space is a setoid X equipped with a C-topology P consisting of
extensional probes.

I The C-topology P has to additionally satisfy

Π(p, q : 2N → X). (Π(α :2N).pα ∼X qα)→ p ∈ P → q ∈ P.

I Continuous maps of C-spaces now have to be extensional.
This defines a notion of equality of continuous maps that ignores
continuity witnesses.

But it makes the constructions and proofs tedious, long and unreadable
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Construction in type theory

Construction by adding a probe axiom

Motivated by the previous approach, we added the following probe axiom

Π(p, q : 2N → X). (Π(α :2N).pα = qα)→ p ∈ P → q ∈ P.

It avoids some uses of (funext) and hence preserves some amount of
computational content.

However, (funext) is still needed in some constructions and proofs.

The canonicity of the theory is potentially destroyed.
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Construction in type theory

Construction by postulating (funext) within a relevant field

We conjectured that (funext) is only used in computationally irrelevant
contexts, and made use of Agda’s irrelevant fields to verify it, and postulated
(funext) within such an irrelevant field.

Then we observed that a stronger form of the additional probe axiom is needed:

Π(p, q : 2N → X). (Π(α :2N).[pα = qα])→ p ∈ P → q ∈ P

where [−] is an irrelevant field.

It computes. But one drawback is that it requires non-standard extension of
type theory.
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Construction in type theory

Construction by postulating ¬¬(funext)

The only property of irrelevant fields we used is that they form a monad T
satisfying T∅ → ∅.
Double negation is the final such monad.

Hence we postulate ¬¬(funext).

Similarly, we need a stronger form of the additional probe axiom

Π(p, q : 2N → X). (Π(α :2N).¬¬(pα = qα))→ p ∈ P → q ∈ P.

Advantages:

I Though the model produced here is not the same as the original, it
provides the same interpretation to simple (and dependent) types.

I It does not destroy computational content of the development!
(The postulated axiom is consistent and in negative form.)
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Construction in type theory

Porting the original development to Cubical Type Theory

Cubical Type Theory1 allows one to directly manipulate n-dimensional cubes:

I it has path types with abstraction and application,

I (funext) has a very simple proof,

I Voevodski’s univalence axiom is also provable, and

I some higher inductive types are available.

Now Agda has an experimental cubical mode. In Cubical Agda, path types and
identity types are equivalent. Hence, theoretically one can derive (funext) for
identity types from the provable one for paths. But it’s not available yet.

To port our original, non-computing development to Cubical Agda, we

I replace (inductive) identity types by path identity types,

I replace usages of pattern matching on identity types by J, and

I do a little extra work to avoid the bugs.

1C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, Cubical Type Theory: a constructive
interpretation of the univalence axiom (2016). To appear in the proceedings of TYPES 2015.
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Construction in type theory

Sample computations of least moduli of uniform continuity

We can compute the least moduli of uniform continuity of T-definable
functions 2N → N as follows:

1. Let a closed T-term F of type (N→ 2)→ N be given.

2. Its interpretation is a continuous map [[F ]]m : 2N → N.

3. Using the fan functional, we get its least modulus of uniform continuity,
that is a closed Agda term

pr1(fan)[[F ]]m : N.

4. Then ask Agda to evaluate it!
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Summary

Summary

I Some issues occur in the type-theoretic development of our C-space model
due to the lack of (funext).

I Directly postulating (funext) destroys the computation.

I We developed a few other approaches to obtain a computing
implementation.

I We ported the original, non-computing development to Cubical Agda, and
it successfully computes.

I Evaluation of paths in Cubical Agda is still very inefficient.

Using function extensionality in Agda, (non-)computationally Ludwig-Maximilians-Universität München


	Background
	Background

	A constructive model of uniform continuity
	A constructive model of uniform continuity

	Construction in type theory
	Construction in type theory

	Summary
	Summary


