A constructive manifestation of the Kleene–Kreisel continuous functionals

Chuangjie Xu joint work with Martín Escardó

Munich Center for Mathematical Philosophy

ABM2015, Mathematics Institute LMU, 17-18 December 2015

Introduction

Kleene-Kreisel continuous functionals

First discussed as

- ▶ Kleene's countable functionals
- ► Kreisel's continuous functionals

Calculated within

- ► Compactly generated topological spaces
- Sequential topological spaces
- Simpson and Schröders QCB spaces
- ► Kuratowski limit spaces
- ► Filter spaces
- ► Scott's equilogical spaces
- ► Johnstone's topological topos
- ▶ ..

Validating the uniform-continuity axiom

The model of Kleene–Kreisel continuous functionals validates the uniform-continuity axiom (UC):

$$\forall f \colon \mathbf{2}^{\mathbb{N}} \to \mathbb{N}. \ \exists n \in \mathbb{N}. \ \forall \alpha, \beta \in \mathbf{2}^{\mathbb{N}}. \ (\alpha =_n \beta \implies f\alpha = f\beta).$$

However, the treatment of the model and the proof is non-constructive.

Summary

Making it constructive

We introduce a classically equivalent model, C-spaces,

- ▶ in which the uniform-continuity axiom holds,
- ▶ but without assuming any constructively contentious axiom in the meta-theory used to define the model.

We work with an intensional type theory with a universe, Σ -types, Π -types, identity types and standard base types.

We have formalized our development and proofs in Agda.

In this talk, however, I will use informal, rigorous mathematical language.

Introduction

Our constructive manifestation

C-spaces and continuous maps

Def. A C-topology on a set X is a collection P of probes $\mathbf{2}^{\mathbb{N}} \to X$ subject to the following probe axioms:

- 1. All constant maps are in P.
- 2. If $t \colon \mathbf{2}^{\mathbb{N}} \to \mathbf{2}^{\mathbb{N}}$ is uniformly continuous and $p \in P$, then $p \circ t \in P$. (Presheaf condition)
- 3. For any two maps $p_0, p_1 \in P$, the unique map $p \colon \mathbf{2}^{\mathbb{N}} \to X$ defined by $p(i * \alpha) = p_i(\alpha)$ is in P. (Sheaf condition)

A C-space is a set X equipped with C-topology.

A function $f\colon X\to Y$ of C-spaces is continuous if $f\circ p\in P_Y$ whenever $p\in P_X$. (Naturality condition)

We write C-Space for the category of C-spaces and continuous maps.

Examples of C-spaces

All continuous maps from $\mathbf{2}^{\mathbb{N}}$ (with the usual topology) to any topological space X form a C-topology on X:

- ▶ Any constant map $2^{\mathbb{N}} \to X$ is continuous.
- ▶ The composite $\mathbf{2}^{\mathbb{N}} \xrightarrow{t} \mathbf{2}^{\mathbb{N}} \xrightarrow{p} X$ of two continuous maps is continuous.
- ▶ The sheaf condition is satisfied because $2^{\mathbb{N}}$ is compact Hausdorff.

Any continuous map of topological spaces is continuous w.r.t. the above C-topology, as composition preserves continuity.

C-spaces form a (locally) cartesian closed category

The constructions are the same as in the category of sets, with suitable C-topologies. For example,

- 1. to get products in C-Space, we C-topologize cartesian products,
- to get exponentials in C-Space, we C-topologize the sets of continuous maps,
- 3. to get products in C-**Space**/X, we C-topologize pullbacks,
- 4. to get exponentials in C-Space/X, we C-topologize the domains of exponentials in \mathbf{Set}/X .

Moreover, C-Space has coproducts.

Discrete C-spaces

Def. A map $p \colon \mathbf{2}^{\mathbb{N}} \to X$ into a set X is called locally constant iff $\exists n \in \mathbb{N}. \ \forall \alpha, \beta \in \mathbf{2}^{\mathbb{N}}. \ (\alpha =_n \beta \implies p(\alpha) = p(\beta)).$

Lemma

The locally constant maps $2^{\mathbb{N}} \to X$ form a C-topology which has the smallest amount of probes on X.

Def. A C-space X is discrete if all functions $X \to Y$ into any C-space Y are continuous.

Lemma

A C-space is discrete iff its probes are precisely the locally constant functions.

Def. We thus refer to the collection of all locally constant maps $\mathbf{2}^{\mathbb{N}} \to X$ as the discrete C-topology on X.

Booleans and natural numbers object

The discrete C-topology on 2 or \mathbb{N} is the set of uniformly continuous maps.

Theorem

In the category of C-spaces:

- 1. The discrete space 2 is the coproduct of two copies of the terminal space.
- 2. The discrete space $\mathbb N$ is the natural numbers object.

Proof

The unique maps g and h in Set in the diagrams below are continuous by the discreteness of 2 and \mathbb{N} :

Yoneda Lemma

The monoid C of uniformly continuous $\mathbf{2}^{\mathbb{N}} \to \mathbf{2}^{\mathbb{N}}$ is a C-topology on $\mathbf{2}^{\mathbb{N}}$.

The Yoneda embedding maps the monoid C to the C-space $(\mathbf{2}^{\mathbb{N}}, C)$. Moreover,

$$y(\star)=(\mathbf{2}^{\mathbb{N}},\mathbf{C})=$$
 the exponential of the two discrete C-spaces.

The Yoneda Lemma says that a map $2^{\mathbb{N}} \to X$ into a C-space X is a probe iff it is continuous in the sense of the category of C-spaces.

The Fan functional

Lemma

The exponential $\mathbb{N}^{2^{\mathbb{N}}}$ is a discrete C-space.

Theorem

There is a continuous functional $\operatorname{fan}\colon \mathbb{N}^{2^{\mathbb{N}}}\to \mathbb{N}$ that calculates (minimal) moduli of uniform continuity.

Proof sketch

- 1. Because any $f \in \mathbb{N}^{2^{\mathbb{N}}}$ is uniformly continuous, we can let fan(f) be the least witness of this fact.
- 2. Since $\mathbb{N}^{2^{\mathbb{N}}}$ is discrete according to the above lemma, the functional fan is continuous.

Modelling uniform continuity

C-spaces provide a model of system T and dependent types:

- 1. Cartesian closed structure simply typed λ -calculus.
- 2. Locally cartesian closed structure dependent types.
- 3. Natural numbers object base type and primitive recursion principle.

Theorem

The uniform-continuity axiom UC is validated by the fan functional.

$$\forall f : \mathbf{2}^{\mathbb{N}} \to \mathbb{N}. \ \exists n \in \mathbb{N}. \ \forall \alpha, \beta \in \mathbf{2}^{\mathbb{N}}. \ (\alpha =_n \beta \implies f\alpha = f\beta).$$

Kleene-Kreisel functionals via sequence convergence

One way of describing the Kleene–Kreisel spaces is to work with the cartesian closed category of Kuratowski limit spaces.

- A limit space is a set together with a designated set of convergent sequences, subject to suitable axioms.
- ▶ A function of limit spaces is called continuous if it preserves limits.
- ▶ We write Lim for the category of limit spaces and continuous maps.
- ► To get the Kleene–Kreisel spaces, we start with the discrete natural numbers and iterate exponentials.
- Example: Any topological space with all (topologically) convergent sequences is a limit space.

C-spaces and limit spaces

- ▶ If A is a limit space, we can give a C-topology on it by saying that a map $\mathbf{2}^{\mathbb{N}} \to A$ is a probe on A iff it is limit-continuous.
- ▶ A map is probe-continuous if it is limit-continuous.
- $ightharpoonup G \colon \mathbf{Lim} \to \mathbf{C}\text{-}\mathbf{Space}$
- ▶ If X is a C-space, we obtain its limit structure by saying that $(x_i) \to x_\infty$ in X iff the induced function $x \colon \mathbb{N}_{\infty} \to X$ is probe-continuous. (Uses non-constructive arguments.)
- ▶ A map is limit-continuous if it is probe-continuous.
- $ightharpoonup F : C\text{-}\mathbf{Space} \to \mathbf{Lim}$
- ▶ Both F and G keep the underlying set but change the structure, and are identity on morphisms.

Summary

Kleene-Kreisel functionals within C-spaces

Lemma

- 1. $G: \mathbf{Lim} \to \mathbf{C}\text{-}\mathbf{Space}$ is a full and faithful embedding.
- 2. $F: C\text{-}\mathbf{Space} \to \mathbf{Lim}$ is left adjoint to G.

$$\operatorname{Lim} \overset{F}{\underset{G}{\longleftarrow}} \operatorname{C-Space}$$

Thus **Lim** is a reflective subcategory of C-**Space**.

3. Moreover, the embedding ${\cal G}$ preserves the natural numbers object, and the cartesian closed structure (products and exponentials).

Theorem

Kleene-Kreisel continuous functionals can be calculated within C-Space.

If UC holds in the meta-theory

What does our model construction do?

Def

The collection of all maps $\mathbf{2}^{\mathbb{N}} \to X$ form an indiscrete C-topology on X. We say X is an indiscrete C-space.

Lemma

- 1. The category of indiscrete C-spaces is equivalent to Set.
- 2. Indiscrete C-spaces form an exponential ideal of C-Space.
- 3. If UC holds, then the discrete space $\mathbb N$ is also indiscrete.

The Kleene-Kreisel and full type hierarchies

Def.

Let ${\bf C}$ be a cartesian closed category with a natural numbers object. The type hierarchy on ${\bf C}$ is the smallest full subcategory containing the natural numbers object and closed under products and exponentials.

The one on **Set** is called the full type hierarchy.

The one on C-**Space** is called the Kleene-Kreisel hierarchy.

Corollary

If UC holds, then the Kleene-Kreisel hierarchy is equivalent to the full type hierarchy.

Theorem

The Kleene–Kreisel hierarchy and the full type hierarchy are equivalent if and only if UC holds.

Summary

Summary

- 1. Validation of uniform-continuity axiom in a weak constructive meta-theory.
- 2. Constructive manifestation of Kleene-Kreisel continuous functionals.
- 3. Equivalence of the Kleene–Kreisel hierarchy and the full type hierarchy when assuming UC.
- 4. Compatible with intuitionistic type theory and formalized in Agda.
- Extraction of computational content from type-theoretic proofs which use UC.