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Abstract

We identify yet another category equivalent to that of Kleene–Kreisel
continuous functionals. Reasoning constructively and predicatively, all
functions from the Cantor space to the natural numbers are uniformly con-
tinuous in this category. We do not need to assume Brouwerian continuity
axioms to prove this, but, if we do, then we can show that the full type
hierarchy is equivalent to our manifestation of the continuous functionals.
We construct this manifestation within a category of concrete sheaves,
called C-spaces, which form a locally cartesian closed category, and hence
can be used to model system T and dependent types. We show that this
category has a fan functional and validates the uniform-continuity prin-
ciple in these theories. Our development is within informal constructive
mathematics, along the lines of Bishop mathematics. However, in order
to extract concrete computational content from our constructions, we for-
malized it in intensional Martin-Löf type theory, in Agda notation, and
we discuss the main technical aspects of this at the end of the paper.

Keywords: Constructive mathematics, topological models, uniform con-
tinuity, fan functional, intuitionistic type theory, topos theory, sheaves,
HAω, Gödel’s system T, Kleene–Kreisel spaces, continuous functionals.

1 Introduction

In a cartesian closed category with a natural numbers object N, define the sim-
ple objects to be the least collection containing N and closed under products and
exponentials (function spaces). The simple objects of any such category give an
interpretation of the simply typed lambda calculus and higher-type primitive
recursion (the term language of Gödel’s system T). The Kleene–Kreisel contin-
uous functionals, or countable functionals [34, 30], form a category equivalent
to the full subcategory on the simple objects of any of the following categories,
among others: (1) compactly generated topological spaces [34, 16], (2) sequen-
tial topological spaces [16], (3) Simpson and Schröder’s QCB spaces [3, 16],
(4) Kuratowski limit spaces [23], (5) filter spaces [23], (6) Scott’s equilogical
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spaces [4], (7) Johnstone’s topological topos [25]. See Normann [35] and Long-
ley [28, 29] for the relevance of Kleene–Kreisel spaces in the theory of higher-type
computation. Counter-examples include Hyland’s effective topos [24] and the
hereditary effective operations (HEO) [28], which give a second simple-type hi-
erarchy, not discussed in this paper (see [28] for a discussion). A third type
hierarchy, discussed here in connection with the continuous functionals, is the
full type hierarchy, which is the full subcategory on the simple objects of the
category of sets [34].

We work with a category of sheaves, analogous to the topological topos,
and with a full subcategory of concrete sheaves [2], here called C-spaces, anal-
ogous to the limit spaces (Section 2). The C-spaces can be described as sets
equipped with a suitable continuity structure, and their natural transformations
can be regarded as continuous maps. The main contributions of this work are
summarized as follows:

1. The simple C-spaces form a category equivalent to that of Kleene–Kreisel
continuous functionals (Section 3.1).

The proof here is non-constructive (as are the proofs of the above equiv-
alences). But we claim that the C-spaces form a good substitute of the
above categories of spaces for the purposes of constructive reasoning.

2. If we assume the Brouwerian axiom that all set-theoretic functions 2N → N
are uniformly continuous, then we can show constructively that the full
type hierarchy is equivalent to the Kleene–Kreisel continuous hierarchy
within C-spaces (Section 3.2).

3. Without assuming Brouwerian axioms, we show constructively that the
category of C-spaces has a fan functional (2N → N)→ N that continuously
calculates moduli of uniform continuity of maps 2N → N (Section 4.1).

4. C-Spaces give a model of system T with a uniform-continuity principle
(Section 4.2), expressed as the skolemization of

∀f : 2N → N. ∃m ∈ N. ∀α, β ∈ 2N. α =m β =⇒ fα = fβ,

where α =m β stands for ∀i < m. αi = βi, with the aid of a fan-functional
constant.

5. C-Spaces give a model of dependent types with a uniform-continuity prin-
ciple, expressed as a type via the Curry–Howard interpretation (Sec-
tion 4.3):

Π(f : 2N → N). Σ(m : N). Π(α, β : 2N). α =m β → fα = fβ

6. We give a constructive treatment of C-spaces (Section 2) suitable for devel-
opment in a predicative intuitionistic type theory in the style of Martin–
Löf [32], which we formalized in Agda notation [33, 8] for concrete compu-
tational purposes, and whose essential aspects are discussed in Section 5.
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We stress, however, that in this paper we deliberately reason informally,
along the lines of Bishop mathematics [6].

Among the above, (3) and (4), and part of (6), appeared in the preliminary
conference version of this paper [40]. The other contributions, (1), (2), (5),
regarding Kleene–Kreisel spaces and dependent types, and part of (6), regarding
the formalization in predicative intuitionistic type theory, are new as far as we
are aware, but of course there are connections with related work discussed below.

As mentioned above, our sheaf topos is closely related to Johnstone’s topo-
logical topos. To build the topological topos, one starts with the monoid of
continuous endomaps of the one-point compactification of the discrete natu-
ral numbers, and then takes sheaves for the canonical topology of this monoid
considered as a category. The category of sequential topological spaces is fully
embedded in the topological topos. The concrete sheaves are precisely the Kura-
towski limit spaces, called subsequential spaces by Johnstone, because they are
the subobjects of the sequential topological spaces. Working non-constructively,
one can show that the topological topos has a fan functional and that it inter-
prets uniform-continuity principles for both simple and dependent types.

The point of our contribution is that we can achieve this by working con-
structively instead, without assuming Brouwerian axioms, and remaining pred-
icative. We replace Johnstone’s monoid by that of uniformly continuous end-
ofunctions of the Cantor space 2N, and we replace the canonical topology by
a smaller, subcanonical, one, suitable for predicative, constructive reasoning.
The category of concrete sheaves is equivalent to that of C-spaces, where a C-
space is a set equipped with a collection of maps from the set 2N, called probes,
subject to suitable axioms, corresponding to the axioms for limit spaces. A
natural transformation, or continuous map, of C-spaces amounts to a function
such that the composition with any probe is again a probe. Then, reasoning
non-constructively, the limit spaces form a (full) reflective subcategory of that
of C-spaces, and also an exponential ideal, which gives the connection with
the Kleene–Kreisel continuous functionals. But, reasoning constructively, all
maps 2N → N in C-Space are uniformly continuous, as discussed above, and
this follows from the Yoneda Lemma. Moreover, if all set-theoretical functions
2N → N are uniformly continuous, then the discrete and indiscrete C-structures
on N coincide, and because the indiscrete spaces form an exponential ideal, all
simple C-spaces are indiscrete, and hence the simple C-spaces form a category
equivalent to the full type hierarchy. This last result is analogous to Fourman’s
reflection theorem [20].

The work of van der Hoeven and Moerdijk [39] considers the monoid of
continuous endomaps of the Baire space NN instead, inspired by [19, 18], to get
a topos model of choice sequences, continuity principles and Bar induction. But
this poses some problems when we consider the Curry–Howard interpretation.
Consider, for instance, the continuity principle

∀f : NN → N. ∀α ∈ NN. ∃m ∈ N. ∀β ∈ NN. α =m β =⇒ fα = fβ,
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whose Curry–Howard interpretation is

Π(f : NN → N). Π(α : NN). Σ(m : N). Π(β : NN). α =m β → fα = fβ.

But this type is always empty, even in intensional type theory [17]. One can,
however, simultaneously have the type-theoretic and topos-theoretic quantifiers,
as in homotopy type theory (HoTT) [38], by constructing the topos existential
quantifier as the propositional truncation of the type-theoretic sum, and then
formulate the continuity principle as

Π(f : NN → N). Π(α : NN). ‖Σ(m : N). Π(β : NN). α =m β → fα = fβ‖.

From this one cannot get a modulus-of-continuity function, because this time
this would need topos-theoretic choice, which fails in this sheaf model. We plan
to investigate this model from a type-theoretic point of view in future work, us-
ing such ideas from HoTT. In our category of C-spaces, the maps f : NN → N are
precisely those that are “uniformly continuous on compact subsets of NN”, with
uniform continuity expressed with the Σ quantifier rather than its propositional
truncation, in the sense that for every uniformly continuous p : 2N → NN, the
composite f ◦ p : 2N → N is also uniformly continuous. With a non-constructive
argument, this is of course equivalent to the continuity of f .

Our work is also related to Coquand and Jaber’s forcing model [11, 12],
which instead uses the semilattice of finite binary sequences under the prefix
order as the underlying category of the site, modelling the idea of a generic
infinite binary sequence. They iterate their construction in order to be able to
model the fan functional, and our model can be regarded as accomplishing this
iteration directly in a single step (personal communication with Coquand).

2 A variation of Johnstone’s topological topos

In this section we define our sheaf topos. We also look at the full subcategory of
concrete sheaves, and show how they can be regarded as spaces, and in particular
we discuss discrete spaces and the natural numbers object.

2.1 Sheaves and natural transformations

Let C be the monoid of uniformly continuous endomaps of the Cantor space 2N,
that is, the functions t : 2N → 2N such that

∀m ∈ N. ∃n ∈ N. ∀α, β ∈ 2N. α =n β =⇒ tα =m tβ.

We write 1 for the identity map of 2N as it is the identity element of C. Notice
that any continuous function 2N → 2N is uniformly continuous, assuming clas-
sical logic or the Fan Theorem. Because we do not assume such principles, we
need to explicitly require uniform continuity in the definition of the monoid C.
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Our site is the monoid C equipped with a countable coverage J consisting
of the finite covering families

{conss : 2N → 2N | s ∈ 2n}
for every n ∈ N, where 2n is the set of binary sequences of length n and
conss : 2N → 2N is the concatenation map:

conss(α) = sα.

It is easy to verify that, for any n ∈ N and for any s ∈ 2n, the map conss is
uniformly continuous and thus an element of the monoid C.

The coverage axiom specialized to our situation amounts to saying that for
all t ∈ C,

∀m ∈ N. ∃n ∈ N. ∀s ∈ 2n. ∃t′ ∈ C. ∃s′ ∈ 2m. t ◦ conss = conss′ ◦ t′. (†)
It is routine to show that:

Lemma 2.1. A map t : 2N → 2N satisfies the coverage axiom (†) if and only if
it is uniformly continuous.

Thus, not only does the coverage axiom hold, but also it amounts to the fact
that the elements of the monoid C are the uniformly continuous functions. By
virtue of this view, we call (C,J ) the uniform-continuity site.

Recall that presheaves on a one-object category, i.e. a monoid, can be for-
mulated in terms of monoid actions [31, §I.1]: A presheaf on the monoid C
amounts to a set P with an action

((p, t) 7→ p · t) : P × C→ P

such that for all p ∈ P and t, u ∈ C

p · 1 = p, p · (t ◦ u) = (p · t) · u.
A natural transformation of presheaves (P, ·) and (Q, ·) amounts to a function
φ : P → Q that preserves the action, i.e.

φ(p · t) = (φ p) · t.
Because the maps in each covering family have disjoint images, we do not

need to consider the compatibility condition in the definition of sheaf:

Lemma 2.2. A presheaf (P, ·) is a sheaf over (C,J ) if and only if for every
n ∈ N and every family {ps ∈ P | s ∈ 2n}, there is a unique amalgamation
p ∈ P such that, for all s ∈ 2n,

p · conss = ps.

Notice also that, by induction, it is enough to consider the case n = 1:

Lemma 2.3. A presheaf (P, ·) is a sheaf over (C,J ) if and only if for any
p0, p1 ∈ P , there is a unique p ∈ P such that

p · cons0 = p0 and p · cons1 = p1.

Our topos is the category Shv(C,J ) of sheaves over the uniform-continuity
site (C,J ).
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2.2 C-Spaces and continuous maps

An important example of a sheaf is the monoid C itself with function composi-
tion as the action. Given t0, t1 ∈ C, the amalgamation t : 2N → 2N is simply

t(α) = tα0(λn.αn+1).

We say a presheaf is concrete if its action is function composition. Then all the
elements in a concrete presheaf (P, ◦) must be maps from 2N to some set X.
Concrete sheaves admit a more concrete description as the set X with the ad-
ditional structure given by the maps in P . We denote the full subcategory of
concrete sheaves by CShv(C,J ).

Concrete sheaves can be regarded as spaces, and their natural transforma-
tions as continuous maps. More precisely, they are analogous to Spanier’s quasi-
topological spaces [37], which have the category of topological spaces and con-
tinuous maps as a full subcategory. One advantage of quasi-topological spaces
over topological spaces, which is the main reason for Spanier’s introduction of
the notion of quasi-space, is that continuous maps of quasi-spaces form a carte-
sian closed category. This category serves as a model of system T and HAω that
validates the uniform-continuity principle, assuming classical logic in the meta-
language. Our concrete sheaves can be seen as analogues of quasi-topological
spaces, admitting a constructive treatment.

A quasi-topology on a set X assigns to each compact Hausdorff space K a
set P (K,X) of functions K → X such that:

(1) All constant maps are in P (K,X).

(2) If t : K ′ → K is continuous and p ∈ P (K,X), then p ◦ t ∈ P (K ′, X).

(3) If {ti : Ki → K | i ∈ I} is a finite, jointly surjective family and p : K → X
is a map with p ◦ ti ∈ P (Ki, X) for every i ∈ I, then p ∈ P (K,X).

A quasi-topological space is a set endowed with a quasi-topology, and a contin-
uous map of quasi-spaces (X,P ) and (Y,Q) is a function f : X → Y such that
f ◦p ∈ Q(K,Y ) whenever p ∈ P (K,X). For example, every topological space X
is a quasi-topological space with the quasi-topology P such that P (K,X) is the
set of continuous maps K → X, and this construction gives the full embedding
of topological spaces into quasi-topological spaces.

This definition can be modified by considering just one compact Hausdorff
space, the Cantor space, rather than all compact Hausdorff spaces, and by
restricting the jointly surjective finite families of continuous maps to the covering
families {conss} considered in the previous section. We call the resulting objects
C-spaces.

Definition 2.4. A C-space is a set X equipped with a C-topology P , i.e. a
collection of maps 2N → X, called probes, satisfying the following conditions,
called the probe axioms:

(1) All constant maps are in P .
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(2) (Presheaf condition) If p ∈ P and t ∈ C, then p ◦ t ∈ P .

(3) (Sheaf condition) For any n ∈ N and any family {ps ∈ P | s ∈ 2n}, the
unique map p : 2N → X defined by p(sα) = ps(α) is in P .

A continuous map of C-spaces (X,P ) and (Y,Q) is a map f : X → Y with
f ◦ p ∈ Q whenever p ∈ P . We write C-Space for the category of C-spaces and
continuous maps.

Notice that the sheaf condition is equivalent to

(3′) For any p0, p1 ∈ P , the map p : 2N → X defined by p(iα) = pi(α) is in P .

and

(3′′) If p : 2N → X is a map such that there exists n ∈ N with p ◦ conss ∈ P for
all s ∈ 2n, then p ∈ P .

(3′) is equivalent to (3) by induction on n, and is more convenient to work with
when verifying that a given set is a C-space. And (3′′) is the uncurried result
of (3), and is more convenient to use if a given set is already known to be a
C-space.

The idea is that we “topologize” the set X by choosing a designated set P of
maps 2N → X that we want, and hence declare, to be continuous. For example,
if X already has some form of topology, e.g. a metric, we can take P to be
the set of continuous functions 2N → X with respect to this topology and the
natural topology of the Cantor space. Of course we have to make sure the sheaf
condition is satisfied.

As mentioned earlier, C-spaces provide a more concrete description of con-
crete sheaves in the following sense. Given a C-space (X,P ), the C-topology P
together with function composition is a concrete sheaf. Conversely, if (P, ◦) is
a concrete sheaf, then all maps in P should have the same codomain.

Proposition 2.5. The two categories C-Space and CShv(C,J ) are naturally
equivalent.

By virtue of this equivalence, C-Space can also be viewed as a full subcate-
gory of Shv(C,J ). Moreover, C-spaces are closed under products and form an
exponential ideal.

The underlying set of a space X is written |X| and its set of probes is
written Probe(X), but we we often write X to mean |X| by the standard abuse
of notation.

2.3 The (local) cartesian closed structure of C-Space

Here we explore the cartesian closed structure of the category C-Space, in
order to model simple types (Section 4.2), as well as its local cartesian closed
structure, in order to model dependent types (Section 4.3).

Theorem 2.6. The category C-Space is cartesian closed.
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Proof. Any singleton set 1 = {?} with the unique map 2N → 1 as the only
probe is a C-space as well as a terminal object in C-Space.

Given C-spaces (X,P ) and (Y,Q), their product is the cartesian product
X × Y equipped with the C-topology R defined by the condition that r : 2N →
X × Y is in R iff pr1 ◦ r ∈ P and pr2 ◦ r ∈ Q, where pr1 and pr2 are the
projections. We skip the routine verifications of probe axioms and the required
universal property.

Given C-spaces (X,P ) and (Y,Q), their exponential is the set Y X of con-
tinuous maps X → Y equipped with the collection R of probes defined by the
condition that r : 2N → Y X is in R iff for any t ∈ C and p ∈ P the map
λα.r(tα)(pα) is in Q. Again, we have to verify that the probe axioms are sat-
isfied and that this has the universal property of an exponential in C-Space,
which involves some subtleties regarding the coverage axiom.

Colimits of sheaves are generally constructed as the sheafifications of the
ones in the category of presheaves (see [31, §III.6]). Here we present a direct
construction of finite coproducts of C-spaces.

Theorem 2.7. The category C-Space has finite coproducts.

Proof. The empty set equipped with the empty C-topology is clearly a C-space
and an initial object in C-Space.

Binary coproducts can be constructed as follows: given C-spaces (X,P )
and (Y,Q), their coproduct is the disjoint union X + Y equipped with the C-
topology R defined by the condition that r : 2N → X +Y is in R iff there exists
n ∈ N such that for all s ∈ 2n either there exists p ∈ P with r(conssα) = inl(pα)
for all α ∈ 2N or there exists q ∈ Q with r(conssα) = inr(qα) for all α ∈ 2N,
where inl and inr are the injections. Here we verify only the sheaf condition (3′):
Given r0, r1 ∈ R, we get n0 and n1 from their witnesses of being a probe on
X + Y . For the map r : 2N → X + Y defined by r(iα) = ri(α), one can clearly
see that the maximum of n0 and n1 is the desired n that makes r ∈ R.

The category C-Space has all pullbacks, which are constructed in the same
way as in Set. An exponential in a slice category C-Space/X is constructed
in the same way as in the slice category Set/X, with a suitable construction
of the C-topology on its domain. The proof is available in [2, Proposition 43],
in the generality of concrete sheaves on concrete sites. Here we present the
construction, but skip the verification as it is similar to the one for exponentials
of C-spaces (which is presented in our formalization).

Theorem 2.8. The category C-Space is locally cartesian closed.

Proof. We skip the easy constructions and verifications of a terminal object and
products in a slice category, but give the construction of exponentials.

Given a continuous map f : X → Y and an element y ∈ Y , the fiber

f−1(y) = {x ∈ X | f(x) = y}

is a C-space, whose C-topology is inherited from X.
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Given objects X
f−→ Y and Z

g−→ Y in C-Space/Y , we construct the expo-
nential gf as follows: The underlying set of the domain of gf is defined by

dom(gf ) = {(y, φ) | y ∈ Y, φ : f−1(y)
cts−−→g−1(y)}.

The C-topology on dom(gf ) is defined by the condition that a map r : 2N →
dom(gf ) is a probe iff

(i) the composite pr1 ◦ r : 2N → Y is a probe on Y , and

(ii) for any t ∈ C and p ∈ Probe(X) such that ∀α ∈ 2N. pr1(r(tα)) = f(pα),
the map λα.pr2(r(tα))(pα) is a probe on Z.

Verifying the sheaf condition for dom(gf ) is similar to the one for exponentials
in C-Space. The exponential gf : dom(gf ) → Y is then defined to be the first
projection. Condition (i) amounts to the continuity of gf . And the idea of (ii)
is that the composite

2N ×Y X
r×1X−−−−→ dom(gf )×Y X

ev−→ Z

is continuous, where evaluation map ev applies the second component of (y, φ) ∈
dom(gf ) to x ∈ f−1(y) ⊆ X.

2.4 Discrete C-spaces and natural numbers object

We say that a C-space X is discrete if for every C-space Y , all functions X → Y
are continuous. A map p : 2N → X into a set X is called locally constant iff

∃m ∈ N. ∀α, β ∈ 2N. α =m β =⇒ pα = pβ.

We call m the modulus of local constancy of p.

Lemma 2.9. Let X be any set.

1. The locally constant functions 2N → X form a C-topology on X.

2. For any C-topology P on X, every locally constant map 2N → X is in P .

Proof. (1) Let P be a collection of all locally constant maps into X. The first
two probe axioms are obviously satisfied. We only verify the sheaf condition (3′):
If p0 and p1 are locally constant with moduli m0 and m1, then the unique map
p : 2N → X defined by p(iα) = pi(α) is locally constant with the modulus
max(m0,m1) + 1.

(2) Let p : 2N → X be locally constant and n be its modulus of local con-
stancy. Then, for each s ∈ 2n, the composite p ◦ conss is constant and thus a
probe on X. Using the sheaf condition, we know that p is a probe on X.

In other words, the locally constant maps 2N → X form the finest C-topology
on the set X, in the sense of the smallest collection of probes. Moreover:
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Lemma 2.10. A C-space is discrete if and only if the probes on it are precisely
the locally constant functions.

Proof. (⇒) Let (X,P ) be a discrete C-space. According to the previous lemma,
all locally constant maps 2N → X form a C-topology, say Q, on X. Because
(X,P ) is discrete, the map (X,P ) → (X,Q) which is identity on points is
continuous. By the definition of continuity, all elements in P are also in Q, i.e.
are locally constant.

(⇐) Let P be the collection of all locally constant functions into X. Given
a C-space (Y,Q) and a map f : X → Y , we show that f is continuous: if
p : 2N → X is locally constant whose modulus is n, then, for each s ∈ 2n, the
composite f ◦p◦conss is constant and thus a probe on Y . By the sheaf condition,
the map f ◦ p is a probe on Y .

We thus refer to the collection of locally constant maps 2N → X as the
discrete C-topology on X. In particular, when the set X is 2 or N, the locally
constant functions amount to the uniformly continuous functions. Hence we
have a discrete two-point space 2 and a discrete space N of natural numbers,
which play an important role in our model:

Theorem 2.11. In the category C-Space:

1. The discrete two-point space 2 is the coproduct of two copies of the termi-
nal space 1.

2. The discrete space N of natural numbers is the natural numbers object.

Proof. The universal properties of 2 and N can be constructed in the same way
as in the category Set, because the unique maps g and h in the diagrams below
are continuous by the discreteness of 2 and N:

1

g0 ��

in0 // 2

g

��

1

g1��

in1oo 1
0 //

x ��

N suc //

h
��

N

h
��

X X
f
// X.

2.5 The Yoneda lemma

The monoid C can be regarded as a one-object category with the object 2N and
the morphisms all uniformly continuous maps 2N → 2N. The Yoneda embedding
y : C→ Shv(C,J ) gives

y(2N) = (C, ◦),

where (C, ◦) is a concrete sheaf as discussed in Section 2.2 and hence can be
seen as a C-space. Then the Yoneda embedding restricts to a functor

y : C→ C-Space
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This concrete sheaf, seen as a C-space, is the set 2N equipped with all uniformly
continuous maps 2N → 2N as the probes.

Lemma 2.12. The C-space y(2N) has the universal property of 2 to the power
N in the category C-Space, and hence also in the category Shv(C,J ).

Proof. It is enough to verify

r ∈ C ⇐⇒ ∀t ∈ C. ∀p ∈ Probe(N). λα.r(tα)(pα) ∈ Probe(2),

i.e. the C-topologies on y(2N) and on the exponential are the same.

Hence we can write
y(2N) = 2N,

where, as already discussed, 2N on the left-hand side stands for the only object
of the monoid C, and, on the right-hand side, for an exponential in the category
of C-spaces. This notational overloading should cause no confusion.

Using this, we conclude that the Yoneda Lemma amounts to saying that a
function 2N → X into a C-space X is a probe iff it is continuous. More precisely:

Lemma 2.13 (Yoneda). A map of the set 2N to the underlying set of a C-space
X is a probe if and only if it is continuous when regarded as a map from the
exponential 2N to the space X in the category C-Space.

Proof. (⇒) Let p : 2N → X be a probe on X. By the presheaf condition of X,
we have that p ◦ t is a probe on X for each t ∈ C, which means that the map p
is continuous. (⇐) Let p : 2N → X be a continuous map. The identity map 1 is
uniformly continuous and thus a probe on 2N. Thus p = p ◦ 1 is a probe on X
by the continuity of p.

3 The Kleene–Kreisel continuous functionals

There are two results in this section: The Kleene–Kreisel spaces are fully and
faithfully embedded in the category C-Space (Section 3.1), and if we assume
UC in a constructive set theory, then the full type hierarchy is equivalent to the
category of Kleene–Kreisel spaces within C-Space (Section 3.2).

3.1 Kleene–Kreisel spaces as a full subcategory of C-Space

From a constructive point of view, the traditional treatment of the Kleene–
Kreisel spaces is problematic, because the proofs available in the literature rely
on either classical logic or constructively contentious principles such as the Fan
Theorem or the Bar induction principle. An example is the fact that all func-
tions 2N → N in the category are uniformly continuous. It is thus natural to ask
whether it is possible to develop the theory of Kleene–Kreisel spaces construc-
tively. It turns out that this is indeed the case, using our category C-Space to
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host the Kleene–Kreisel spaces as a full subcategory: again we start with the
natural numbers object, and close under finite products and function spaces.

In this section we present a classical proof that the resulting full subcategory
of C-Space is isomorphic to the category of Kleene–Kreisel spaces. But, as
discussed above, we have constructive proof that this subcategory has a fan
functional without assuming the Fan Theorem or Bar Induction (Section 4.1).
Thus, this subcategory can be seen as a constructive, classically equivalent,
substitute for the traditional manifestations of Kleene–Kreisel spaces. This
section is the only part in this paper in which we employ non-constructive
arguments.

As discussed in the introduction, limit spaces provide an approach to the
Kleene–Kreisel continuous functionals via sequence convergence [23]. There-
fore, instead of Kleene’s notion of countable functional or Kreisel’s notion of
continuous functional, we relate our C-spaces to limit spaces to show that how
Kleene–Kreisel spaces can be calculated within our model.

Let N∞ be the set N∪{∞} (in a constructive development, a more careful def-
inition of N∞ is needed, but since other parts of this section use non-constructive
arguments, this is not important here). Recall that a limit space consists of a
set X together with a family of functions x : N∞ → X, written as (xi) → x∞
and called convergent sequences in X, satisfying the following conditions:

1. The constant sequence (x) converges to x.

2. If (xi) converges to x∞, then so does every subsequence of (xi).

3. If (xi) is a sequence such that every subsequence of (xi) contains a subse-
quence converging to x∞, then (xi) converges to x∞.

A function f : X → Y of limit spaces is said to be continuous if it preserves
convergent sequences, i.e. (fxi) → fx∞ whenever (xi) → x∞. We write Lim
to denote the category of limit spaces and continuous maps.

The category Lim is cartesian closed and has a natural numbers object.
Here we give the constructions of products and exponentials of limit spaces,
omitting their verification: Let X and Y be limit spaces. The underlying set of
the product X × Y consists of pairs of elements of X and Y ; and, a sequence
(xi, yi) converges to (x, y) in X × Y iff (xi)→ x in X and (yi)→ y in Y . The
underlying set of the exponential Y X consists of continuous maps X → Y ; and,
a sequence (fi) converges to f in Y X iff (fixi) → fx in Y whenever (xi) → x
in X. We recall the following facts without proof.

Lemma 3.1.

1. Any topological space with all topologically convergent sequences forms a
limit space.

2. Any continuous map of topological spaces is continuous in the sense of
limit spaces.

12



In particular, the one-point compactification N∞ and the Cantor space 2N

(together with their topologically convergent sequences) are limit spaces. The
following is analogous to the Yoneda Lemma 2.13.

Lemma 3.2. Convergent sequences in any limit space X are in one-to-one
correspondence with the (limit) continuous maps N∞ → X.

In this section, to avoid terminological confusion, we reserve the terminology
continuous function for morphisms of topological spaces, probe-continuous func-
tion for morphisms of C-spaces, and limit-continuous function for morphisms
of limit spaces.

We first prove the analogue of Lemma 3.5 for C-spaces.

Lemma 3.3.

1. The continuous maps from the set 2N with the usual Cantor topology to
any topological space X form a C-topology on X.

2. Any continuous map of topological spaces is probe-continuous.

Proof. We firstly show that the three probe axioms are satisfied.
(1) Clearly all constant maps are continuous.
(2) Let p : 2N → X be a continuous map and t ∈ C. As t is uniformly

continuous and thus continuous, the composite p ◦ t of two continuous maps is
continuous.

(3) Let p0, p1 : 2N → X be continuous maps. Then it is clear that the map
p : 2N → X defined by p(iα) = pi(α) is also continuous.

Now let f : X → Y be a continuous map of topological spaces. Since any
probe p is a continuous map 2N → X, the composite f ◦ p is continuous and
thus a probe on Y . Hence f is probe-continuous.

In particular, N∞ together with all continuous maps 2N → N∞ forms a C-
space. Now we define functors between the categories Lim and C-Space. By
the above lemmas, the following holds for any of the three notions of continuity
considered in this section:

Lemma 3.4. The following maps r and s are continuous, and r is a retraction
with section s:

r : 2N → N∞
1n0α 7→ n

1ω 7→ ∞,

s : N∞ → 2N

n 7→ 1n0ω

∞ 7→ 1ω.

Lemma 3.5. Any topological space with all (topologically) convergent sequences
forms a limit space. And any continuous map is limit-continuous.

By the above lemma, the Cantor space 2N, together with all convergent
sequences (or, equivalently, continuous maps N∞ → 2N), forms a limit space.
Now we define functors between the categories Lim of limit spaces and C-Space.

For a limit space X, define the limit probes on X to be the limit-continuous
maps 2N → X w.r.t. the limit structure on 2N given in Lemma 3.5. The following
shows that limit spaces can be regarded as a full subcategory of C-spaces.

13



Lemma 3.6 (The functor G : Lim→ C-Space).

1. For any limit space X, the limit probes form a C-topology on X.

2. For any two limit spaces X and Y , a function X → Y is limit-continuous
if and only if it is continuous w.r.t. the limit probes.

This gives a full and faithful functor G : Lim→ C-Space which on objects
keeps the same underlying set but replaces the limit structure by the C-topology
given by limit probes, and is the identity on morphisms.

Proof. (1) We need to show that the three probe axioms are satisfied.

(i) It is clear that any constant map is limit-continuous and thus a probe.

(ii) Let p : 2N → X be limit-continuous and t ∈ C. Given any convergent
sequence (xi) → x∞ in 2N, the induced map x : N∞ → 2N is continuous.
Because t is uniformly continuous, the composite t ◦ x is continuous and
thus a convergent sequence. Then we have (p(t(xi))) → p(t(x∞)) by the
limit-continuity of p, and thus the composite p ◦ t is limit-continuous.

(iii) Given probes p0, p1 : 2N → X, i.e. p0, p1 are limit-continuous, we define a
map p̄ : 2 → (2N → X) by p̄(0) = p0 and p̄(1) = p1. By the discreteness
of 2, this map is limit-continuous. Since both the head function, h(α) =
α0, and the tail function, t(α) = λn.αn+1, are limit-continuous, the map
p : 2N → X, defined by

p = λα.p̄(hα)(tα),

is also limit-continuous, by the cartesian closedness of Lim. Clearly p is
the unique amalgamation of p0, p1.

(2) Let X and Y be limit spaces. (⇒) Suppose that f : X → Y is a limit-
continuous map. Then it is also probe-continuous w.r.t. the C-topologies given
as above, because any probe p onX is a limit-continuous map, and the composite
f ◦ p limit-continuous and hence a probe on Y . (⇐) Suppose that f : X → Y
is a probe-continuous map, w.r.t. the C-topologies given as above. Given a
convergent sequence (xi)→ x∞, we know that the induced map x : N∞ → X is
limit-continuous by Lemma 3.2. By (2(⇒)), we know that x is probe-continuous,
and hence so is the composite f ◦ x. Since the retraction r : 2N → N∞ is
continuous and thus a probe on N∞, the composite f ◦x◦ r is a probe on Y , i.e.
a limit-continuous map. As (1i0ω) → 1ω in 2N, the sequence (f(x(r(1i0ω))))
converges to f(x(r(1ω))), which amounts to (fxi) → fx∞ by the definition
of r.

Lemma 3.7 (The functor F : C-Space→ Lim).

1. For any C-space X, the probe-continuous maps N∞ → X form a limit
structure on X.

2. For any two C-spaces X and Y , if a function X → Y is probe-continuous
then it is limit-continuous w.r.t. the above limit structures.
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This gives a functor F : C-Space → Lim which on objects again keeps
the same underlying set but replaces the C-topology by an appropriate limit
structure, and is the identity on morphisms.

Proof. (1) We need to verify the three axioms of limit structure.

(i) Clearly any constant map N∞ → X is probe-continuous and thus a con-
vergent sequence.

(ii) If x : N∞ → X is probe-continuous, i.e. (xi) → x∞, and (xfi) is a sub-
sequence of (xi), then we extend the reindexing function f : N → N to
f̃ : N∞ → N∞ by defining f̃(n) = f(n) for n ∈ N and f̃(∞) = ∞. Once
we show that f̃ is probe-continuous, then so is the composite x◦f̃ and thus
(xfi) → x∞. For endomaps N∞ → N∞, probe-continuity corresponds to
continuity. Given an open set U ⊆ N∞. If ∞ 6∈ U then U must be a finite
subset of N. Since f , as a subsequence-reindexing function, is injective
(in fact, bijective) and strictly increasing, the set f̃−1(U) is also a finite
subset of N and thus open. If ∞ ∈ U then its complement Ū is a finite

subset of N. The complement f̃−1(U) = f̃−1(Ū) is a finite subset of N
and thus f̃−1(U) is open.

(iii) Suppose that (xi) is a sequence such that every subsequence of (xi) has
a subsequence converging to x∞. We need to prove the the induce map
x : N∞ → X is probe-continuous. Let p be a probe on N∞. By the assump-
tion, we have a subsequence (xfi) which converges to x∞. We extend the
reindexing function f as above and get a continuous map f̄ : N∞ → N∞.
We know that f is bijective and thus the inverse f̄−1 is also continuous,
because any continuous bijection of compact Hausdorff spaces is a home-
omorphism. Since (xfi) → x∞, the map x ◦ f̄ is probe-continuous, i.e.
x ◦ f̄ ◦ q is a probe for any probe q on N∞. If we choose q = f̄−1 ◦ p which
is a probe by the continuity of f̄−1, then x ◦ f̄ ◦ f̄−1 ◦ p = x ◦ p is a probe
on X.

(Notice that in both (ii) and (iii) we have used non-constructive arguments.)
(2) Let X and Y be C-spaces, and let f : X → Y be a probe-continuous

map. Given a convergent sequence (xi) → x∞, i.e. a probe-continuous map
x : N∞ → X, the composite f◦x is also probe-continuous and hence a convergent
sequence on Y .

Lemma 3.8. Limit spaces form a reflective subcategory of C-spaces.

Proof. It remains to show that F : C-Space→ Lim is left adjoint to G, i.e. for
any C-space X and limit space Y , we have Lim(FX, Y ) ∼= C-Space(X,GY )
naturally. As the underlying sets remain the same when we apply the functors,
this is equivalent to saying that a map f : X → Y is limit-continuous iff it is
probe-continuous.

(⇒) Suppose f is limit-continuous, i.e. if x : N∞ → X is probe-continuous
then (fxi) → fx∞. Given a probe p : 2N → X on X, we want to show that
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f ◦p is a probe on Y , i.e. f ◦p is limit-continuous. Given a convergent sequence
α : N∞ → 2N, i.e. α is probe-continuous, the composite p ◦ α is also probe-
continuous. Then by the limit-continuity of f we have that (f(pαi)) converges
to f(pα∞).

(⇐) Suppose f is probe-continuous. Given a probe-continuous function
x : N∞ → X (a convergent sequence), we want to show that (fxi) → fx∞.
Since the retraction r : 2N → N∞ defined in Lemma 3.4 is continuous and thus
probe-continuous, so is the composite x ◦ r. By the probe-continuity of f , we
have that f ◦x◦ r is a probe on Y and thus limit-continuous. Since (1i0ω)→ 1ω

in 2N, the sequence (f(x(r(1i0ω)))) converges to f(x(r(1ω))), which amounts to
(fxi)→ fx∞ by the definition of r.

Lemma 3.9. The reflector F : C-Space→ Lim preserves finite products.

Proof. It is trivial to verify that terminal objects are preserved by F . Now
we show that F preserves binary products. Let X and Y be C-spaces. Both
F (X×C-SpaceY ) and F (X)×LimF (Y ) have the same underlying set, the carte-
sian products of X and Y . We need to show that their limit structures are the
same. (⇒) Given a convergent sequence z : N∞ → X × Y in F (X ×C-Space Y ),
i.e. a probe-continuous map, clearly the pair (z ◦ pr1, z ◦ pr2) is a conver-
gent sequence in F (X) ×Lim F (Y ). (⇐) Given a convergent sequence (x, y)
in F (X) ×Lim F (Y ), where both x : N∞ → X and y : N∞ → Y are probe-
continuous, we define a map z : N∞ → X × Y by zi = (xi, yi). Clearly z is
probe-continuous and thus a convergent sequence in F (X ×C-Space Y ). One
can easily see that, if a convergent sequence is transferred by one of the above
directions and then by the other, it remains the same.

In view of the above, we can regard Lim as a full subcategory of C-Space.

Lemma 3.10. [26, Corollary A.1.5.9] Let G : C → D be a functor between
cartesian closed categories, and suppose G has a left functor F . If G is full
and faithful and F preserves binary products, then G is cartesian closed ( i.e. G
preserves finite products and exponentials).

Lemma 3.11. [26, Proposition A.4.3.1] Let D be a cartesian closed category,
and C a reflective subcategory of D, corresponding to a reflector F on C. Then
F preserves finite products iff (the class of objects of) C is an exponential ideal
in D ( i.e. the exponential CD is in C whenever C ∈ C and D ∈ D).

The above two general categorical lemmas give the following:

Theorem 3.12.

1. The functor G : Lim→ C-Space is cartesian closed.

2. Limit spaces form an exponential ideal of C-Space.

Moreover, the discrete objects in these two categories coincide.

Lemma 3.13. If X is a discrete C-space, then G(F (X)) = X.
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Proof. It suffices to prove that p : 2N → X is a probe on X iff it is a probe on
G(F (X)).

(⇒) This direction holds for any C-space X. Let p be a probe on X. Then
p is a probe-continuous map by the Yoneda Lemma 2.13. We need to show
that p is a probe on G(F (X)), i.e. p is limit-continuous. Given a convergent
sequence x : N∞ → 2N, we know that x is also a probe-continuous map. Thus
the composite p ◦ x is probe-continuous and thus a convergent sequence on X.

(⇐) Let p be a probe on G(F (X)). According to the definitions of G and F ,
this means that, for any continuous maps x : N∞ → 2N and q : 2N → N∞, the
composite p ◦ x ◦ q is locally constant. We need to show that p is a probe on X,
i.e. p is locally constant. For the sake of contradiction, assume that p fails to
be locally constant. By classical logic, this amounts to

∀m ∈ N. ∃α, β ∈ 2N. α =m β ∧ pα 6= pβ

which, by countable choice, defines two sequences (αi) and (βi) such that
(i) αm =m βm and (ii) pαm 6= pβm for all m ∈ N. Because of the com-
pactness of 2N and (i), there are subsequences (αfi) and (βfi), both of which
converge to the same point γ ∈ 2N and satisfy αfi =fi β

fi for all i ∈ N. Because
the composites α ◦ f and β ◦ f , being convergent, are continuous, we know that
both p◦(α◦f)◦r and p◦(β◦f)◦r are locally constant, where r is the retraction
defined in Lemma 3.4. Let m to be the maximum of their moduli. By their
local constancy and the fact 1m0ω =m 1ω, we have

pαfm = p
(
αf(r(1m0ω))

)
= p

(
αf(r(1ω))

)
= pγ

pβfm = p
(
βf(r(1m0ω))

)
= p

(
βf(r(1ω))

)
= pγ

and thus pαfm = pβfm which contradicts (ii) and hence shows that p must be
locally constant.

Recall that Kleene-Kreisel spaces can be obtained within Lim by starting
with the natural numbers object, and closing under finite products and function
spaces. By Theorem 3.12 and Lemma 3.13, the full subcategory of C-Space
generated by the same process is isomorphic to the above one of Lim, which
leads to the following conclusion:

Theorem 3.14. The Kleene–Kreisel spaces can be calculated within C-Space by
starting from the natural numbers object and iterating products and exponentials.

An outline of a more direct proof of this theorem is as follows: (0) F (GX) =
X for any limit space X. (1) If a map p : 2N → X is a probe on a C-space X,
then it is also a probe on G(FX). (2) If X = G(FX) and Y = G(FY ), then
X × Y = G(F (X × Y )). (3) If Y = G(FY ) then Y X = G(F (Y X)). The proofs
of (0) and (1) are easy and those of (2) and (3) use (1). The advantage of the
more abstract approach we have chosen is that it gives additional information.
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3.2 The Kleene–Kreisel and full type hierarchies

The full type hierarchy is the smallest full subcategory of Set containing the
natural numbers and closed under exponentials. If we work in a constructive set
theory (or type theory) with the Brouwerian axiom UC, it turns out that the full
type hierarchy is equivalent to the Kleene–Kreisel hierarchy calculated within
C-Space. It is interesting that other Brouwerian axioms such as more general
forms of continuity or Bar Induction are not needed to prove the equivalence.
In the proofs below, we explicitly assume UC whenever it is needed.

For a set X, one can take all maps 2N → X as probes on X. The resulting
space is called indiscrete, and refer to the collection of all maps 2N → X as
the indiscrete C-topology on X. It is clear that X is indiscrete iff for any C-
space Y , all maps Y → X are continuous. This is equivalent to saying that the
functor ∇ : Set→ C-Space that endows a set with the indiscrete C-topology is
right adjoint to the forgetful functor C-Space→ Set. Moreover, the adjunction
becomes an equivalence when restricted to indiscrete spaces:

Lemma 3.15. The category of indiscrete C-spaces is equivalent to Set.

Lemma 3.16. Indiscrete C-spaces form an exponential ideal.

Proof. Let X be a C-space and Y an indiscrete C-space. Given r : 2N → Y X ,
for any t ∈ C and p ∈ Probe(X), the map λα.r(tα)(pα) has codomain Y and
thus a probe on Y . Therefore, all maps 2N → Y X are probes on Y X .

The crucial, but easy, observation is this:

Lemma 3.17. If UC holds in Set, then the discrete space N is also indiscrete.

Proof. By definition, the discrete topology consists of all uniformly continuous
functions 2N → N. But if UC holds in Set, this amounts to all functions
2N → N, which, by definition, constitute the indiscrete topology, and hence N
is indiscrete (and the discrete and indiscrete topologies are the same).

The desired result follows directly from the previous lemmas:

Corollary 3.18. If UC holds in Set, then the full type hierarchy is equivalent
to the Kleene–Kreisel hierarchy.

This can be strengthened so that its converse also holds:

Theorem 3.19. The forgetful functor from the Kleene–Kreisel hierarchy to the
full type hierarchy is an equivalence if and only if UC holds in Set.

Proof. By the above lemmas, if UC holds in Set, then the adjunction restricts
to an equivalence of the two hierarchies. Conversely, if it is an equivalence, then
UC holds in Set, because, as we have seen, it always holds in C-Space.

Two larger full subcategories of Set and C-Space are equivalent if UC holds.

Lemma 3.20.

18



1. Finite products of indiscrete C-spaces are indiscrete.

2. If UC holds in the category of sets, then finite coproducts of indiscrete
C-spaces are indiscrete.

Proof. The first claim is trivial. If UC holds, then the space 2 is both discrete
and indiscrete. If X and Y are indiscrete spaces, we construct a coproduct X+Y
as in the proof of Theorem 2.7. We also define, by cases, a map i : X + Y → 2
which maps in0 x to 0 and in1 y to 1 for any x ∈ X and y ∈ Y . As 2 is indiscrete,
the map i is continuous. Given any map r : 2N → X + Y , the composite i ◦ r
is a probe on 2 and thus locally constant, i.e. there is a natural number n such
that for all s ∈ 2n the composite i ◦ r ◦ conss is constant. If its value is 0, then
r◦conss maps all α ∈ 2N to in0 x for some x ∈ X, i.e. there is a map p : 2N → X
such that r(conssα) = in0(pα); otherwise, there is a map q : 2N → Y such that
r(conssα) = in1(qα). By the definition, the map r is a probe on X + Y .

Define extended hierarchies by closing under finite products and coproducts,
in addition to exponentials.

Theorem 3.21. If UC holds in Set, then the extended full type hierarchy is
equivalent to the extended Kleene–Kreisel hierarchy.

4 Modelling uniform continuity with C-spaces

We first show that there is a fan functional in C-Space that continuously calcu-
lates moduli of uniform continuity of maps 2N → N. We then use the cartesian
closed structure of C-spaces to model simple types and system T, and their lo-
cal cartesian closed structure to model dependent types. In both cases we show
that the uniform-continuity principle UC is validated. In the case of system T,
in which quantifiers are absent, we skolemize UC using the fan functional. In
the case of dependent types, UC is represented by a type rather than a logical
formula, via the Curry–Howard interpretation, and we show that this type is
inhabited. This second case is also reduced to the fan functional. In the case
of system T, we also prove an additional, but well known, result, namely that
a definable function 2N → N in the full type hierarchy is uniformly continuous.
We show this by establishing a logical relation between the full type hierarchy
and the Kleene–Kreisel functionals.

4.1 The fan functional

According to the Yoneda lemma 2.13, the continuous maps from the Cantor
space in C-Space to the natural numbers object are in natural bijection with
the uniformly continuous maps 2N → N of the meta-language used to define
the model. Moreover, the topology on the set of continuous maps 2N → N is
discrete:

Lemma 4.1. The exponential N2N
is a discrete C-space.
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Proof. Given a probe p : 2N → N2N
, we want to show that it is locally constant.

By the construction of exponentials in Section 2, we know that for all t, r ∈ C,

λα.p(tα)(rα) ∈ Probe(N),

i.e. λα.p(tα)(rα) it is uniformly continuous. In particular, we can take

t(α)(i) = α2i and r(α)(i) = α2i+1,

which are both uniformly continuous, and define q(α) = p(tα)(rα). From the
proof of uniform continuity of q, we get its modulus n. (NB. Here we are
implicitly using choice, but this is not a problem in intensional type theory,
provided we interpret the existential quantifier as a Σ type. In a setting without
choice, we would need to define uniform continuity by explicitly requiring a
modulus.) Now define a map join: 2N × 2N → 2N by

join(α, β)(2i) = αi
join(α, β)(2i+ 1) = βi.

Given α, α′, β ∈ 2N with α =n α
′, we have

p(α)(β)
= p(t(join(α, β)))(r(join(α, β))) (by the definitions of t, r, join)
= q(join(α, β)) (by the definition of q)
= q(join(α′, β)) (join(α, β) =2n join(α′, β), 2n ≥ n)
= p(α′)(β).

Hence p is locally constant and therefore N2N
is discrete.

Theorem 4.2. There is a fan functional

fan: N2N
→ N

in C-Space that continuously calculates moduli of uniform continuity.

Proof. Given a continuous map f : 2N → N, i.e. an element of N2N
, we know f

is uniformly continuous because the identity map 1 is a probe on 2N and hence
f = f◦1 ∈ Probe(N) by the continuity of f . Then we can get a modulus mf from
the witness of its uniform continuity. From this modulus we can calculate the
smallest modulus of f as follows. We define a function lmod: (2N→N)→N→N
by induction on its second argument:

lmod f 0 = 0
lmod f (n+ 1) = if (∀s ∈ 2n. f(s0ω) = f(s1ω)) then (lmod f n)

else (n+ 1).

With a proof by induction, we can show that lmod f n is the smallest modulus
if n is a modulus of f . Hence, we define

fan(f) = lmod f mf .

According to the previous lemma, the space N2N
is discrete and hence this

functional is continuous.
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4.2 Gödel’s System T

We firstly recover a well-known result, using a logical relation between the set-
theoretical and the C-Space models of the term language of system T. Then
we extend the theory with a constant for the fan functional so that it becomes
expressive enough to formulate the principle UC, and show how C-Space vali-
dates UC.

The term language of system has a ground type N of natural numbers, bi-
nary product type × and function type →. For our purposes, it is convenient
(although not strictly necessary) to add a ground type 2 of booleans. The
constants and equations associated to the ground types are

• the natural number 0 : N,

• the successor function suc : N→ N, and

• the recursion combinator

rec : σ → (N→ σ → σ)→ N→ σ
rec x f 0 = x
rec x f (suc n) = f n (rec x f n).

• booleans f, t : 2,

• the case-distinction function:

if : 2→σ→σ→σ
if f x y = x
if t x y = y,

The atomic formulas in system T consist of equations between terms of the
same type, and more complex formulas are obtained by combining these with
the propositional connectives ∧ and⇒ (the negation of a formula φ can of course
be defined as φ⇒ 0 = suc 0).

The term language of system T can be interpreted in any cartesian closed
category with a natural numbers object N and a coproduct 2 (or 1 + 1) of two
copies of the terminal object [27]. Specifically, types are interpreted as objects:
the ground type N is interpreted as the object N, the ground type 2 as the
coproduct 2, product types as products, and function types as exponentials.
Contexts are interpreted inductively as products. And a term in context is
interpreted as a morphism from the interpretation of its context to the one of
its type. The constant rec and if are interpreted using the universal properties
of N and 2 in the standard way [27].

Throughout this section (and the next), we use σ, τ to range over types,
bold lower case letters t, u, x, f , m, α, β to range over terms, and φ, ψ to
range over formulas.
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Uniform continuity of T-definable functions. As we have seen, both the
categories Set and C-Space are cartesian closed and have a natural numbers
object and a coproduct 1 + 1, and hence serve as models of system T. We
now recover a well-known result (Theorem 4.5), using a logical relation between
these two models. In the following we use the semantic brackets [[− ]] for the
interpretation, and add Set and C-Space as subscripts to distinguish which
model we are working with.

Definition 4.3. The logical relation R over the set-theoretical and C-space
models is defined by

1. If σ is a T type, then Rσ ⊆ [[σ ]]Set × [[σ ]]C-Space is defined by induction
on type σ as follows:

(a) Rι(a, a
′) iff a = a′, where ι is the ground type 2 or N;

(b) Rσ→τ (f, f ′) iff, for any a ∈ [[σ ]]Set and any a′ ∈ [[σ ]]C-Space, if
Rσ(a, a′) then Rτ (f(a), f ′(a′)).

2. If Γ ≡ x1 :σ1, . . . , xn :σn is a context, then RΓ ⊆ [[Γ]]Set × [[Γ]]C-Space is

defined by RΓ(~a, ~a′) iff Rσi
(ai, a

′
i) for all i ≤ n.

3. Given f ≡ [[Γ ` t : τ ]]Set and f ′ ≡ [[Γ ` t : τ ]]C-Space, R(f, f ′) iff, for any

~a ∈ [[Γ]]Set and any ~a′ ∈ [[Γ]]C-Space, if RΓ(~a, ~a′) then Rτ (f(~a), f ′(~a′)).

With a proof by induction on terms as usual, we can easily show that the
interpretations of any T term in these two models are related.

Lemma 4.4. If Γ ` t : τ , then R([[Γ ` t : τ ]]Set, [[Γ ` t : τ ]]C-Space).

We say that an element x ∈ [[σ ]]Set in the set-theoretical model is T-definable
if it is the interpretation of some closed T term, i.e. there exists a closed term
t : σ such that x = [[t ]]Set.

Theorem 4.5. Any T-definable function 2N → N is uniformly continuous.

Proof. If f : 2N → N interprets the term f : (N→2)→N, then f is related to
the continuous map [[f ]]C-Space : 2N → N according to the above lemma. By
the definition of the logical relation, we can easily show that f is uniformly
continuous.

Validating the uniform-continuity principle in system T. The above
shows that the definable functions 2N → N in the full type hierarchy are uni-
formly continuous, with uniform continuity formulated externally to the theory,
in the model. We now show how to validate the internal principle of uniform
continuity, working with C-spaces.

In a theory with quantifiers, such as HAω, the principle UC is formulated as
follows:

` ∀f :(N→2)→N. ∃m :N. ∀α,β :N→2. α =m β ⇒ fα = fβ.
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In order to express this in system T, which lacks quantifiers, we first treat
Γ ` ∀(x :σ).φ as Γ,x :σ ` φ, and then we add a constant

fan : ((N→2)→N)→N

to remove the existential quantifier by skolemization, so that we get the purely
equational formulation

f :(N→2)→N,α :N→2,β :N→2 ` α =fan(f) β ⇒ fα = fβ.

To formulate α =m β, we define a term agree : (N→2)→(N→2)→N→2 by

agree α β
def
== rec t (λi. λx. min (eq αi βi) x),

where min : 2→2→2 gives the minimal boolean and eq : 2→2→2 has value t
iff its two arguments are the same, both of which can be defined using if. The
idea is that

agree α β m = t iff α and β are equal up to the first m positions.

Then the formula of (UC) that we are working with becomes

f :(N→2)→N,α :N→2,β :N→2 ` agree α β (fan f) = t⇒ fα = fβ.

We interpret types and terms of this theory in C-Space as before, while the

meaning of the constant fan is given by the functional fan: N2N → N constructed
in Chapter 4.1. Here and in the next section, semantic brackets without explicit
decorations refer to the C-Space interpretation. Formulas are interpreted in-
ductively as follows. Given ~ρ ∈ [[Γ]],

(1) [[Γ ` t = u ]](~ρ) = [[Γ ` t : σ ]](~ρ) = [[Γ ` u : σ ]](~ρ),

(2) [[Γ ` φ ∧ ψ ]](~ρ) = [[Γ ` φ ]](~ρ)× [[Γ ` ψ ]](~ρ),

(3) [[Γ ` φ⇒ ψ ]](~ρ) = [[Γ ` φ ]](~ρ)→ [[Γ ` ψ ]](~ρ),

where, in the right-hand side, = represents equality (or identity type), × binary
product, and → function space in the meta-theory. We then say that C-Space
validates Γ ` φ iff [[Γ ` φ ]](~ρ) is inhabited for any ~ρ ∈ [[Γ]].

Theorem 4.6. The model of C-spaces validates UC.

Proof. If the interpretation of the formula agree α β m = t is inhabited, then
we have [[α ]] =[[m ]] [[β ]], with a proof by induction on [[m ]]. In particular, the
inhabitedness of the interpretation of agree α β (fan f) = t implies [[α ]] =fan[[f ]]

[[β ]]. According to the definition of fan, we have [[fα ]] = [[fβ ]].
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4.3 Dependent types

In the previous section, we showed that C-spaces give a model of system T that
validates the uniform-continuity principle (UC), namely

∀(f : 2N → N). ∃(m ∈ N). ∀(α, β ∈ 2N). α =m β =⇒ fα = fβ.

For this, we used the cartesian closedness of C-spaces to interpret simple types
and formulas in system T, and we gave a skolemized version of (UC) using the fan
functional in order to remove the quantifiers, which are absent from system T.
In this section, we exploit the local cartesian closedness of C-spaces to model
dependent types. In this case, the uniform-continuity principle is formulated
as a closed type, via the Curry–Howard interpretation, rather than as a logical
formula, namely

Π(f : (N→ 2)→ N). Σ(m :N). Π(α : N→ 2). Π(β : N→ 2). α =m β → fα = fβ,

where 2 denotes the type of binary digits f and t, N denotes the type of natural
numbers. Here α =m β stands for Π(i :N). i < m→ αi = βi. For this, we have
to introduce the less-than relation < as a ground type, or equivalently define it
as a Σ-type. Another way is to define a term agree : (N→2)→(N→2)→N→2
using the primitive recursor as in the previous section. It is provable in type
theory that

agree α β m = t iff Π(i :N). i < m→ αi = βi.

Because all these definitions are equivalent, they would have equivalent interpre-
tations in any model. Therefore, it does not matter which definition of α =m β
that we are working with. Our objective is to show that the type UC is inhabited
in the locally cartesian closed category of C-spaces.

As is well known, locally cartesian closed categories [36] and variations,
such as categories with attributes [21] and categories with families [15], give
models of dependent type theories. Seely’s interpretation in locally cartesian
closed categories [36] has a coherence issue with type substitution, as pointed
out by Curien [13]. This problem can be addressed by changing the syntax
to work with explicit substitutions [13], or by changing the semantics to work
with categories with attributes [21] or categories with families [15]. A more
recent discussion of categorical models of MLTT, relating Curien’s [13] and
Hofmann’s [21] approaches can be found in [14].

Clairambault and Dybjer show that locally cartesian closed categories and
categories with families are biequivalent [9]. Using one direction of this biequiva-
lence, which amounts to Hofmann’s construction [21], one can translate a locally
cartesian closed category C to a category with families (C, TC). Then one can
show, by induction on types, that Γ ` A is inhabited in C iff it is inhabited in
(C, TC). Therefore, we can ignore the coherence issue and work directly with the
locally cartesian closed structure of C-Space to model the uniform-continuity
principle.
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Recall that, in Seely’s model, a type in context Γ ` A is interpreted as an
object, i.e. a morphism Ā→ Γ̄, in the slice category C/Γ̄, and a term Γ ` a : A
is interpreted as a section of the interpretation of its type:

Ā
[[Γ`A ]] // Γ̄

[[Γ`a:A ]]��
Ā.

The right adjoint to the pullback functor interprets Π-types, its left adjoint
interprets Σ-types, and equalizers interpret identity types. We say the model C
validates Γ ` A iff the interpretation [[Γ ` A ]] has sections.

Theorem 4.7. The locally cartesian closed category of C-spaces validates the
Curry–Howard formulation of the uniform-continuity principle.

Proof. It is enough to show that the domain of [[` UC]] is inhabited. The proof
is essentially the same as that of Theorem 4.6, which is carried out using the
fan functional.

Since the space dom([[` (N→2)→N ]]) is equivalent to the exponential N2N

in C-Space, the underlying set of dom([[` UC]]) is equivalent to the set of

continuous functions N2N → dom(u), where u is the interpretation of

f : (N→ 2)→ N ` Σ(m :N). Π(α : N→ 2). Π(β : N→ 2). α =m β → fα = fβ.

The underlying set of dom(u) is equivalent to the set of pairs (f,m), where

f ∈ N2N
and m ∈ N, such that fα = fβ whenever α =m β. By the definition of

the fan functional, the pair (f, fan(f)) is clearly in dom(u). Therefore, we have
a map

(f 7→ (f, fan(f)) : N2N
→ dom(u)

which is continuous because N2N
is discrete by Lemma 4.1.

Notice that the space dom(u) in the above proof consists of tuples (f,m, φ)
which satisfy certain conditions. These conditions, together with the continuous
map φ, amount to saying thatm is a modulus of uniform continuity of the map f .
Notice that this holds in various flavours of (extensional and intensional) MLTT,
and that system T can be regarded as a subsystem of MLTT, and that the proof
given here is essentially the same as the one given above for system T, in a
slightly different language.

5 Construction of the model in type theory

In the previous sections, we constructed a model of type theory in informal set
theory. In this section, we discuss the construction of the model in type theory,
which we formalized in Agda notation. The main purpose of this formalization
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is to extract computational content from our model of C-spaces, rather than
merely certify the correctness of our constructions and proofs.

The above results have been deliberately developed in such a way as to
be routinely formalizable in predicative intensional type theory in Martin-Löf’s
style (MLTT). The main difficulties of formulating the constructions and of
proving the theorems involve the absence of function extensionality and the
presence of proof relevance in MLTT. We discuss the issues in Section 5.1 and
the approaches to address them in Section 5.2.

5.1 Function extensionality and proof relevance

As mentioned above, the first difficulty of the type-theoretic development of the
model is the lack of function extensionality (funext), that is, for any type X
and any type family x :X ` Y (x),

Π(f, g : Π(x :X).Y (x)). (Π(x : X).fx = gx)→ f = g.

Another difficulty is that MLTT is proof-relevant. Some issues related to these
difficulties arise in the type-theoretic rendering of

1. discrete C-spaces,

2. exponentials of C-spaces, and

3. the fan functional.

(1) and (2) are in a similar situation related to the lack of (funext) for infinite
sequences, that is, functions N → 2. In the informal proofs of (1) and (2), we
take a prefix of a sequence, concatenate it to the suffix and then consider this
the same sequence as the original one. However, this is not the case in MLTT
unless (funext) is available.

(3) is subtler and more interesting: (funext) is seemingly necessary, but
also not sufficient for constructing the fan functional and for proving its desired
property, due to the presence of proof relevance in MLTT. For instance, uniform
continuity is formulated as a Σ-type, i.e. a uniformly continuous map is a pair
consisting of a underlying map 2N → N and a witness of uniform continuity.

When formalizing the proof that the domain N2N
of the fan functional is a

discrete space (Lemma 4.1), if we attempt to prove an equality of two uniformly
continuous maps, i.e. two pairs, we would be able to only obtain an equality of
their underlying maps, which is not sufficient, because even for the same map
there could be many different witnesses of uniform continuity. By requiring the
existence of a minimal modulus of uniform continuity, the type that expresses
that a map is uniformly continuous can have at most one inhabitant. However,
even with this refinement, we still need (funext) to complete the type-theoretic
implementation of the fan functional.
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5.2 Dealing with the lack of function extensionality

To address the above issues caused by the lack of (funext), we developed the
following approaches, all of which have been implemented in Agda:

1. Use setoids. This well known approach [22], which is also at the heart
of Bishop’s approach to constructive analysis [7], consisting of the use of
types equipped with equivalence relations, works here with no surprises.
But the drawback, as usual, is that it gives a long formalization that
obscures the essential aspects of the constructions and proofs.

2. Simply postulate (funext). This is of course the easiest approach, but
would potentially destroy the computational content of formal proofs, be-
cause then (funext) becomes a constant without a computational rule.
Thus, although we obtain a clean formalization, we potentially lose com-
putational content.

3. Postulate (funext) within a computationally irrelevant field. After the pre-
vious approach (2) was completed, we observed that our uses of (funext)
do not really have computational content, and we used a feature of Agda,
called irrelevant fields [1], to formulate and prove this observation. In
practice, we actually needed to slightly modify approach (2) to make this
idea work. In any case, the drawback is that it requires the extension of
type theory with such irrelevant fields, which we would prefer to avoid.

4. Postulate the double negation of (funext). In turn, after we completed
approach (3), we observed that it does not really depend on the nature of
irrelevant fields, but only on the fact that irrelevant fields form a monad T
with T∅ → ∅. As is well known, double negation is the final such monad.
There are two advantages with this approach: (i) we do not need to work
with a non-standard extension of MLTT, and (ii) postulating negative,
consistent axioms does not destroy computational content [10].

With the last approach (4), we achieve our main aim of extracting computational
content from type-theoretic proofs that use the principle UC, in a relatively clean
way, avoiding the usual bureaucracy associated with setoids.

5.3 Summary and relevance of the formalization in Agda

We formalized all the results of this paper in Agda, except Section 3.1, which
anyway is non-constructive and plays mainly the role of convincing ourselves
that we are working in the right category. The equivalence of the full type hier-
archy and the Kleene–Kreisel hierarchy assuming UC seems to unavoidably rely
on (funext), but for the other developments of this paper, ¬¬funext is enough,
and, moreover, postulating this does not break the computational content of the
type-theoretic proofs [10]. We also developed a formalization of the conference
version [40] of this paper using setoids rather than ¬¬funext, which is much
more cumbersome.
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The formalization of Section 4.3 gives a practical illustration that it is pos-
sible to extract computational content from type-theoretic proofs that use the
Brouwerian principle UC, without non-constructive axioms in the correctness
of the computational extraction process. This is justified by the fact that the
extraction can be done and proved in intensional Martin-Löf type theory with-
out any added axiom (if we use setoids) or just with the double negation of
function extensionality as a postulate (which gives a more direct and transpar-
ent approach). At the moment, our model does not address universes, and we
regard this as an (important and) interesting open problem.

From a practical points of view, we are also interested in sharper informa-
tion about uniform continuity, in the sense that a finite part of the input, not
necessarily an initial segment, decides the output. For this, we may consider an
alternative coverage based on overwriting maps

overwrite(n,b) : 2N → 2N,

where n ∈ N and b ∈ 2 indicate that the nth bit of the input sequence is to be
overwritten to value b. This is also expected to reduce some computations from
exponential to linear time, but this is left for future investigation.
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[3] I. Battenfeld, M. Schröder, and A. Simpson. Compactly generated domain
theory. Mathematical Structures in Computer Science, 16(2):141–161, 2006.

[4] A. Bauer, L. Birkedal, and D. S. Scott. Equilogical spaces. Theoretical
Computer Science, 315(1):35–59, 2004.

[5] A. Bauer and A. Simpson. Continuity begets continuity. Presented at
Trends in constructive mathematics in Germany, 2006.

[6] E. Bishop and D. Bridges. Constructive analysis, volume 279. Springer-
Verlag, 1985.

[7] Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, 1967.

[8] A. Bove and P. Dybjer. Dependent types at work. Proceedings of Language
Engineering and Rigorous Software Development, LNCS, 5520:57–99, 2009.

[9] P. Clairambault and P. Dybjer. The biequivalence of locally cartesian closed
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