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We extend Coquand’s construction of universe in presheaf models [1] to the one in sheaf
models. When attempting to verify the sheaf condition for this “universe”, we face two problems
which are discussed in the end of the note.

Recall that a coverage J on a category C assigns to each object X € C a collection J(X)
of families of morphisms {¢;: X; — X }ier, called covering families, such that for any covering
family {¢;: X; = X}ier € J(X) and any morphism f: Y — X, there exists a covering family
{j:Y; = Y}jes € J(Y) such that each composite f o1); factors through some ¢;.

If T is a sheaf on a site (C,J), then for each object X € C we have a set I'(X) and a map

- T(X) > T(Y)
for each f: Y — X such that
(s1) p-1x = p for all p: T'(X).
(s2) (p-f)-g=p-(fog) forall p: T'(X), f: Y > Xand g: Z—>Y.

(83) For any {¢;: X; = X}icr € J(X) and any compatible family of elements {p;: I'(X;) }ier,
there is a unique element p: I'(X) such that p - ¢; = p; for each i € I.

In this note, we write I', A to denote sheaves, X,Y, Z to denote C-objects, f,g,h to denote
C-morphisms, and ¢, 1, ¢ to denote maps in covering families in 7.

Now we attempt to construct the (first) universe in the sheaf model. For X: C, we define
U(X) as a collection of families of sets. Specifically, an element A: U(X) is a family of sets
indexed by the C-morphisms into X, together with a map

—eg: Ay — A(fog)
foreach f: Y — X and g: Z — Y, satisfying the following conditions:
(ul) aely =a, forall f: Y — X and a: Ay.
(u2) (aeg)eh=ae(goh) forall f:Y =X, a:Af,9: Z—Y and h: W — Z.

(u3) For any morphism f: Y — X, any covering family {¢;: ¥; — Y };cr, and any compatible
family {a;: A(foy,)}icr, there is a unique a: Ay such that a e ¢; = a; for all i € 1.

Then (the underlying family of) the universe I' - U is defined by U, := U(X) for all p: I'(X).
The restriction map of U is defined by, for A: U(X), f: Y - X and g: Z =Y,

(A . f)g = A(fog).

To be a type U needs to satisfy the sheaf condition. However, we only manage to prove the
following:

Proposition 1. For any covering family {p;: X; — X}icr, for any compatible family of ele-
ments {A*: U(X;)}ier, there is an element A: U(X) such that A - @; = A for all i € I, which
is unique up to (pointwise) isomorphism.

We prove this by additionally requiring {1y : Y — Y} € J(Y) of the coverage J. In the
following proof, we explicitly point out where this additional property is needed.



Proof. Given a covering family {¢;: X; — X };e; and a compatible family {A*: U(X;)}ier, we
define A: U(X) as follows: Given f: Y — X, by the coverage axiom, we can find a covering
family {v;: Y; = Y} cs such that

Vied. dijel. 3g;: Yi—=X;,. foh; =@ 0g;. )
We define '
Ay = ] A5
jeJ

Notice that the above definition uses the axiom of choice, and that different choices of 7 and g
in (1) give different results. However, if {1y: Y — Y} € J(Y) then all the resulting products
are isomorphic. The proof is essentially the same as the one below of the uniqueness of A.

For w: Ay and g: Z — Y, we define w e g: A(yoq) as follows: Using the coverage axiom for
{pi} and f, we get a covering family {¢;: Y; — Y} ¢ satisfying (). Using the coverage axiom
again for {¢;} and g, we get another covering family {¢x: Z = Z}rex such that

VkeK. Jjped. 3hy: Zpy—Yj,. go ¢ =), o hy. 1)
If we combine (f) and (), then we have
VkEK . Fjp€J. 3y Zy—Y;, inel Agr:Ys, —Xi,. (fog) o dr = @i, o (gk © hy).
Thus, for k € K, we define
(weg)(k) := wliy) ehy: Al .

Notice that A,y (obtained using the coverage axiom for {¢;} and f o g) and [],cx Az’;kohk)
may not be the same, but they are isomorphic as discussed above. Hence we may need to apply
the isomorphism to make w e g well-defined.

We skip the (complicated) proof that A satisfies (ul) to (u3).

Then we prove A-p; = A’ for each i € I: Given f: Y — X, we want to show A, o5 = A}
If we have {1y} € J(Y), then this singleton family satisfies the equation given by the coverage
axiom for {¢;} and @; o f, i.e. (p; 0 f)oidy = ¢; 0 f. Hence we have (A- ;) = A(pof) = A}
according to the construction of A.

The above A is unique up to isomorphism: Suppose that B: U(X) satisfies B-p; = A for all
i € I. We want to show that Ay and By are isomorphic for all f: Y — X. Let {¢;: Y; = Y}jey
be a covering family obtained using the coverage axiom satisfying ().

(=) Given w: Ay, we have w(j): AZ for each j € J. Because

Ay = (B- ©i,)g, (by the assumption B - ¢; = A")
= Big,,og,) (by the definition of restriction maps of U)

= B(fowj) (by (T))

we have a family of elements {w(j): B(foy,)}jes. Using condition (u3) of B, we get a
unique element of By.

(<) Given b: Bf,.we have b e 1;: B(;.y,). We have shown AZ = B(foy,), thus, the element
bet; isin Ay . Then the map Aj.(be ;) is in A.

The composite of the above operations are identity due to the uniqueness property in condition
(u3) of B. O

In summary, we have two problems when trying to prove the sheaf condition for U: (1) Our
construction of amalgamation additionally requires the additional property {1y} € J(Y") of the
coverage. (2) Amalgamations (if exist) are unique only up to isomorphism.
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