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Abstract

We aim to develop the nonstandard Dialectica interpretation [4] and its soundness proof in Agda [3], so that we
can extract Agda programs from nonstandard proofs. This note recalls the definition of a constructive nonstandard
arithmetic, namely system H, and formulates the nonstandard Dialectica interpretation in a way that is suitable
for a formal, type-theoretic development.

1 Nonstandard arithmetic H

We recall the definition of the constructive nonstandard system H introduced in [4] which is a conservative extension
of E-HA“, the Heyting arithmetic with finite types.

Term language. The term language T* of System H is an extension of Gédel’s T with finite sequences. Specifically,
it has a base type N of natural numbers, function types ¢ — 7, and sequence types ¢*:

(i) For N, we have two constructors 0 : N and s : N — N, and a recursor Rec, : 0 - (N - 0 — 0) - N — ¢ for

each o, satisfying
Reca (av fv 0) =o a
Recy(a, f,sn) =, f(n,Recy(a, f,n))

foranya:0, f:N— o0 — o and n:N.

(ii) For function types, we have lambda abstraction Az?.t : ¢ — 7 for ¢ : 7, and application fa: 7 for f: 0 — 7 and
a : o, satisfying the 8- and n-rules.

(iii) For sequence types, we have two constructors [| : o* (the empty sequence) and _ :: - : 0 — o — o* (the
prepending operation) and a list recursor Rec;T 0= (T — 0 —0)— 7" — 0o for each o and 7, satisfying

Recj;,-r(a’ LD = a
Rec, .(a, f,xxs) =, f(x,Recy(a, f,2s))

foranya:o0, f:7—0—0,x:7and xs: 7.

Using the list recursor, we can define a length function |_|: 0* — N such that, for all z : o and zs : 0¥,

0l =~ 0
|zas] =y s(|as])
and a projection function (zs,4) — xs; of type 0* — N — ¢ such that, for all : o, s : 0* and i : N,
i =0 ¢
(xzs)y =, =
(x::x8)si =0 T8

where c? is a canonically chosen element of o (notice that all types in T* are non-empty). Both functions will be used

for formulating the axiom of extensionality for sequence types.

Logic. We firstly have a theory E-HA** by extending E-HA“ with the axioms and rules for finite sequences. Then
we have E-HAZ™ by extending E-HA®* with unary predicates st” for each type o. And system H is an extension of
E-HAZ" with a few nonstandard principles.

Specifically, formulas of E-HAZ™ (and thus of H) are built up as follows:
(1) Equations a =, b, where terms a,b : o have the same type, are atomic formulas.
(2) For each term ¢ : o we have an atomic formula st (¢).
(3) If A and B are formulas, then so are AA B, AV B and A= B.
(4) If A is a formula and 27 is a variable, then V% A, 327 A, V*'27 A and 3%*2° A are formulas.

And we adopt the following abbreviations:



(a) n<m = Fksn+k=m

(b) Vi<n A := Vi (i<n= A)
Ji<n A := i (i<nAA)

(¢) z €, xs 1= Fi<|zs| x =5 s;
(d) Ya €, s A(z) = Vi<|xs| A(xs;)
Jz €, xs A(z) = Fi<|zs| A(xs;)

We may omit the superscribed and subscribed types if no confusion is caused.
Since we have a primitive notion of equality at each type, we assume the following axioms of extensionality:

e f=,.,9 <& V27 fr=, gz
o 15 =4 ys < (|zs| =n |ys|) A Vi<|zs| 8, =4 y$;)

A formula is called internal if it does not contain st; otherwise, it is called external. We use ®, ¥ for arbitrary
formulas and ¢, ¢ for internal formulas in this note.

E-HA®*" extends E-HA® with the following sequence aziom
o SA: Vas7 (25 =5 [l V327, ysT a8 = x::y5)
as well as the two equations for the list recursor Rec* introduced above.

E-HAZ" has all the axioms and rules from E-HA“*. The ones of intuitionistic logic apply to all formulas. Moreover,
it has the following axioms for st:

o st(z) ANz =, y=st(y) for any terms z,y : o.

e st(t) for all closed term t.

st(f) Ast(z)=st(fx).
Vsta? A(z) < Vo (st(x) = A(z)).
7 A(x) & J27 (st(z) A A(z)).

There are two induction axioms in E-HAS*. The internal one IA applies to internal formulas only, while the external
one IA* applies to arbitrary formulas:

e IA: ©(0)AVn (p(n)=¢(sn)) = VYn p(n)
o IA*": ®(0) AVt (®(n)=P(sn)) = V'n ®(n)
where ¢(n) is internal and ®(n) can be any formula.

System H extends E-HAZ" with the following principles:

e A higher-type version of Nelson’s idealisation principle (1) [1]
|: Vtes® JyVeeas o(x,y) = Iy Vtap(z,y)
where (x,y) is internal.

e The nonclassical realisation principle (NCR)
NCR: Vy 32 ®(z,y) = Fws” Yy Iz €, 25P(2,y)
where ®(z,y) can be any formula.

e The herbrandised axiom of choice (HAC)
HAC : Wt 3ty d(z,y) = FPFO=7 Vo Iyc F(z) ®(z, y)
where ®(z,y) can be any formula.

e A herbrandised form of a generalised Markov’s principle (HGMP®")
HGMP® . (Vsta%p(z) =) = Ftaus® (Vrcasp(x)=1))
where both ¢(z) and v are internal.

e A herbrandised independence of premise principle (HIPys:) for formulas of the form Vs'z.p(x)
HIPye : (Va7 p(z) =ty U (y)) = Ftys™ (Vap(z)=IycysU(y))

where ¢(x) is internal and ¥(y) can be any formula.



2 A functional interpretation for H

The idea of the nonstandard Dialectica interpretation for system H, introduced in [4], is that each formula ® is
interpreted by 3rVs'u|®|” where |®|” is an internal formula and r is a finite sequence of potential realisers, of which
at least one is the actual realiser. In this note, we formulate it in a way that is suitable for a formal, type-theoretic
development. For this, we figure out the types of realisers and counterexamples which are omitted in [4]. And we add
binary products to HAZ" rather than tuples as in [4] to simplify the typing.

Here are some notations of sequences we use in this section for convenience:
e Given a: o, we write [a"] : o* for the sequence containing n copies of a, and particularly [a] for the singleton.

e Given xs,ys : c*, we write xs++ys for the concatenation of xs and ys defined using the list recursor.
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e Given w : (o x 7)*, we have sequences w! : ¢* and w? : 7* (by mapping the projection functions to w).

Given F': (0 —7*)* and x : 0, we write F'[z] : 7* for the sequence Fy(x)++Fy(z)++... ++Fp_(x).

Given F': (c—7—p*)*, x:0 and y : 7, we write F'[z,y] : p* for the sequence Fy(z,y)++ ... ++Fp_i(z,y).

Since every type is inhabited, we choose a canonical element c? for each type by induction on ¢; in particular, we
choose ¢? := [c?] (i.e. the singleton sequence rather than the empty one).

Definition 1. We simultaneously associate to each formula A types d*(A) of (actual) realisers and d~(A) of coun-
terexamples:

d¥(a=,b):=1 d (a=,0):=1

dt(st?(t)) ;=0 d=(st(t)):=1
dT(AAB):=dtAxd™B d (AAB):=d " Axd™ B
dH(AV B) :=d*A x d*B d"(AVB):=d Axd B
dT(A=B) :=((dtA)* —» (d™B)*) x ((dTA)* = d~B — (d~A)*) d (A=B):= (dTA)* xd B
dt(VaT A) == dT A d- (Ve A) :=d- A

dT(32°A) :=dTA d=(Fz? A) := (d~ A)*
dT(V'27A) := 0 — (dT A)* d-(V¥'27A) =0 xd A

AT (327 A) = 0 x dT A d=(F27 A) := (d- A)*

Then, for every formula A and terms r : (dTA)* and u : d~ A, we define an internal formula |A|” by induction on A:
(i) la =50 = a=,0
(ii) [st?(t)|, = te€sr
(iii) [AA B, = [Al, A|BIL,
(v) |4V Bl = |Al, VIBI,
(v) [A= BV, = YueW?[r,v]|AlL = B
(vi) V27@(2)[;, = V27|@(2)[,
(vil) |F27@(2)|F = Fz7Vveu|P(2)|]
(vill) V20 ®(2)| B, = |®(a)[i
(ix) [F270(2)|" = Fzer'Voeu|®(z)|
The nonstandard Dialectica interpretation Dg(®) of a formula @ is defined by
Dge(®) = Fotp@ ) sty d @ |7

Remark. (1) In the definition of dt/—, if we ignore the cases of st,V,3, treat Vs, 3" as V, 3, and remove *, then
what we get is exactly the types of realisers and counterexamples in the Dialectica interpretation (see e.g. [2, §7.4]).
(2) A realiser of a formula ® is a sequence (i.e. a term of type (d*®)*) containing at least one actual realiser (which
is a term of type d*®). (3) A counterexample of ® is simply a term of type d~®, as counterexamples are universally
quantified in the Dg-interpretation.



Lemma 2. If ¢ is an internal formula, then we have
E-HA“* - vr@ @) vyl @ (Jo|7 < o).
Lemma 3. Let ® be a formula. For any r,¢: (d*®)* and y : d~®, we have
E-HAY" @[y Ar <t = |<I>\Z

where r < ¢ means that r is contained in ¢, i.e. Ve(z€r = z€t).

Using the above two lemmas, we prove the soundness of the Dg-interpretation.

Theorem 4 (Soundness). Let ® be a formula of system H and let A, be a set of internal formulas. If
H+ A H
then from the proof we can extract a closed T* term 7 : (dT®)* | called the realiser of ®, such that
E-HAY" + Apne Vg0 (@7

Proof. The proof is carried out by induction on the length of the derivation.
We firstly look at the case of the contraction axiom.

0. A= ANA
We define
U = . ((ro,ro) - i (Pppj=1, Tpry—1) 2 []) - (dtA)* — (dTA x dT A)*
Y = Ardw. (vovp[]) @ (dTA)* = (d"Axd A) — (d”A)*
For any (r,v) : (dTA)* x (d~A x d~ A), we have

A= ANARSYT = Vue (v o= )AL = AL A AL

In the usual Dialectica interpretation for HA” decidability of primitive formulas (and hence of quantifier-free
ones) is needed to realise the contraction axiom, because any given counterexample of A A A consists of two
counterexamples of A and the decidability of |A|? (as it is quantifier-free) allows us to check which one is better.
In the Dg-interpretation, interpreted formulas |A|! may contain quantifiers and hence may not be decidable.
However, decidability is not needed to realise the contraction axiom as shown above (or any axioms or rules).

We skip the other logical axioms and rules, and prove only the cases of non-standard axioms.
(V“—intro) Vo (st(z)= A(z)) = V*'z7 A(x)
d* (Va7 (st(z) = A(x))) = 0" — (dTA)"
d=(Va? ( t(z)=A(z))) =c* xd™ A
4+ (a7 A(2)) = 0 = (d* A)*
d=(Vs'27 A(z)) =0 xd— A
d* (v*t-intro) = ((o* = (dTA)*)* = (0= (dTA)*)*) x ((6* = (dTA)*)* = (0 x d™A) = (o* x d™A)*)
d~ (V®%-intro) = (¢* — (dTA)*)* x (o x d™A)
We define
U:= A F.[\a.F[[a]]] : (6" = (dTA)*)* = (60— (dTA)*)*
Y = AFA\(a,v).[([a],v)] : (6*—=(dTA)*)* = (60 xd”A) = (o*
For any (F, (a,v)) : (6* — (dTA)*)* x (¢ x d~ A), we have

x dTA)*.

wetintrol {0V = wyel(fal, v)] Va? (veyi = A@) ") = 4@

&A@ = A

The above realiser of V**-intro (and similarly those of V*'-elim, F*-intro, F**-elim) is essentially the identity map.
We only need to perform some sequence operations to make U and Y type-check.



2. (Vs'-elim) VS'27 A(z) = Va7 (st(z)= A(x))

dt(vst-elim) = ((c — (dTA)*)* —
d™ (Vst-elim) = (o — (dTA)*)* x
We define

= (0" = (dTA)*)*) x ((c—=(dTA)*)*—=(c* xd~A)—= (0 x d”A)*)
x (0* x d™A)
U := AF.[Aa.(Flag]++ - - ++ Flajq—1])] : (0= (dTA)")" — (0" = (dTA)*)*
Y := AFA(a,v).((ag,v) =t -+ i (apq—1,0) = []) : (0= (dTA)*)" = (6" xd™A) = (o x d”A)*
using the list recursor Rec”, and have
YyeY (F,(a,v)) y2 = v Veea (z,v) €Y (F, (a,v)).
For any (F, (a,v)) : (0 — (dTA)*)* x (¢* x d~ A), we have

[a0]++~-++F[a‘a|,1]

vet-eliml {107 = VyeY (F, (o, 0) [A@)I") = VaealA@)l)

[a0]++~-++F[a‘a|,1]

& WyeY(F, (a,0) Ao ™ = VecalA@@))y
using Lemma 3 and the fact that Flz] < Flag]++ - - ++Flajq 1] for all x € a.
. (F-intro)  Fz7(st(z) A A(z)) = P2 A(z)
dT(Fz7(st(z) A A(z))) = d T (F'27A(x)) =0 x dT A
d= (327 (st(x) A A(x))) = d~ (F'27A(z)) = (d~A)*
dT (Fintro) = ((0 x dTA)* — (0 x dTA)*) x ((0 x dTA)* — (d"A)* — ((d~A)*)*)
d™ (F-intro) = (o x dTA)* x (d~A)*

We define
U:=Mr : (o xdtA)* — (0 xdTA)*

Y= arofu] ¢ (0 x dTA) — (d”A) s ((d-A)*)".
For any (r,v) : (0 x dTA)* x (d~ A)*, we have

‘[(U Yl

[F=t-introlsy’ Vy€ev]Iz7Vy ey (m67“1 A |A(a:)|2?) = E|x€r1Vy€v|A(x)|?;2

& E|x€r1Vy€v|A(x)|;2 :>E|x€r1Vy€U|A(ac)|§2

. (Ft-elim) Ptz A(x) = Fz°(st(z) A A(z))
The proof is almost the same as the one of (F¢-intro).

. (IA*") We equivalently realise the rule (IR*") of the external induction principle (as in [4]).

D(0) AV (®(n)=P(sn))
VSin®(n)

(IR%)

Assume that we have a realiser of ®(0), i.e. a term 7 : (dT®)* such that

vud” ®|®(0)|" (1)

and a realiser of V*'n (®(n)=®(sn)), i.e. a term F : (N — (((dT®)* — (d*®)*) x ((dT®)* -d~®— (d~P)*))*)*
such that L
V(n,t,v)NX(d ®)"xd"e (Vwng[n,t,v] |®(n)|t =|®(sn)|E Fin, t]) (1)

where Fy : (N — (dT®)* — (dT®)*)* and Fy: (N — (dT®)*t - d~® — (d~®)*)* are defined using F such that
Filn,t] = (F[n)'[t]  Fan,t,0] = (F[n))*[t, ).

Then we define a term
T := An.Rec(r, Am.Az.Fy[m, z]),n) : N— (dT®)*

and have
T0)=r T(sn) = Fi[n,T(n)].

Now we show that [T]: (N — (dT®)*)* is a realiser of Vs'!n®(n), i.c.

¥(n,v)" @ (n) [



by induction on n (i.e. using the internal induction principle).
Base case. For any u : d~®, we have |‘I>(O)|:7f(0) = |®(0)|" which holds due to (7).

Inductive step. Given n, assume Vvd_q’\@(n)ﬁ(") Given v : d~®, we have |(I>(sn)|T(m) |<I>(sn)|F1 T rhich
can be proved using (1) and the induction hypothesis.
. (I) Vtes® JyTVrcas (x,y) = TV a7 p(2, y)
dt(vtes® Iy Vo cas o(x,y)) = o — (dtp)*

d=(vtas” Jy Ve exs p(r,y)) = o* x (d"p)*
d* (Va7 p(z,y)) = 0 — (dte)*
d~ By 27p(z,y)) = (0 x d"p)*
d* () = (0" = (d¥9)")" = (o= (dT9)")") x (67 = (dT9)")" = (o x d79)" = (0" x (d7¢)")")
d(1) = (0" = (d*¢)*)* x (o x d~p)"
We define

U:=Mrc : (0= (dTp)*)* = (0 = (dTo)*)*
Y= Ar (!l e)] : (0F = (dT)*)* = (0 xd7p)* = (0 x (d"p)*)".

For any (r,v) : (6* = dTp)* x (6 x d"p)*, we have

1G] Ywe [(v}, ¢)] Ty Vucws Vo cwy |z, y) W™ = Iy Vuen|p(ur, y)|

‘ug

& FyVzevlio(r,y)=Iy™Vwevp(w,y)

by using Lemma 2 (¢ is internal).

(
. (NCR) Wy ™Iz ®(x,y) = Ftas” Vy Iz €, x5 d(z,y)
dJr(VyTEISt P(z,y)) =0 xdTP

d= (VY F a7 @(x,y)) = (d” )"

dt(Ftes” Vy 3z €, 25 B(2,y)) = 0* x dtP

d=(Ftws” Vy Iz €, x5 B(z,y)) = ((d~®)*)*

dT(NCR) = ((0 x dT®)* = (¢* x dT®)*) x ((6 x dT®)* — ((d~®)*)* = ((d~P)*)*)
d7(NCR) = (o0 x dT®)* x ((d~®)*)*

U= Ar((rtrd) o (rtrd) oo (rl,rﬁ‘fl) =) ¢ (e xdT®)* = (o* xdT®)*
Y = o : (0 xd @) = ((d”®)*)* — ((d”®)*)*

where we write 72 for the ith element in the sequence r? : (d¥®)*, and have

OENt =[O () =2
For any (r,v) : (0 x dT®)* x ((d~®)*)*, we have

" = Jese|(r)MVue vy Jz e xsVw e u|®(z, y)|% .

‘ w w

INCR|5 ol — VuevVy™ Iz ertVweu|®(z,y)

. (HAC) Vstao3sty™®(z,y) = FVFo=7"steo 3y € F(z) ®(z, y)
d‘*(VSt TPyTH(z,y)) =0 — (T x dTP)*

d= (Va7 Iy ®(x,y)) = 0 x (d”P)*

dH(FFoT ey e F(x) ®(z,y) = (0 — 7%) x (0 — (dH®)*)

d- (athoar vbt UEIyeF( )@(x,y)) = (0 %X (di‘:I) *)*

dT(HAC) = ((0 = (7 x dT®)*)* — ((¢ = 7*) X (0 = (dT®)*))*)
X((c = (T xdT®)")* = (6 x (d™®)*)* = (0 x (d~®)*)*)

d=(HAC) = (¢ — (7 x dT®)*)* x (o0 x (d=®)*)*

We define



Y :=Ardvw @ (0 — (7 xdT®)*)* = (0 x (d”®)*)* — (0 x (d”®)*)*.
For any (r,v) : (0 — (1 x dT®)*)* x (¢ x (d~®)*)*, we have

|HAC\[r(,[u]’Y)] = VYuevIye(rlui]) Vweus [P (uy, )(7[“1])
= AFe[\z.(r[z])! }VU€U3y€F(u1)Vw€u2|¢(u1,y)|g[“1])2.

9. (HGMP®) (V'zp(z) =) = Ftas” (Vrcas p(z)=1))
d* (Va7p(z) =) = (0= (dTe)")" = (d¥¥)*) x (0= (dT¢)")" = d7¢ = (0 x d7¢)")
(

d=(va7p(z)=¢) = (0 —(d +<P)*)* xd7¢
d+(35t$8 (Veexs p(z)=¢)) = 0c* x (((dTe)* = (dT¢)*) x ((dTp)* = d"¢ — (d7¥)*))
d=(Ftas” (Vrexs p(z)=1))) = (d*(p x d7ah)*

We define
U := M. [((r%[c,c])t,¢)] : (dT (Vs a7p(z) =) — (d+(EISt:ch*(Vx€xs p(z)=)))*

Y = Ardwc] ¢ (dT (VT p(z) =) = dT(Fas” (Veers p(z) =) — (d7 (Vzp(z) =1))*
For any (r,v) : (d+ (V2@ (x)=))* x d=(Ftxs® (Ve €xs p(x)=1))), we have

|HGMPSt\L€g’Y)] = Vuelc] (Vwer[ug, ug]p(wr)=v) = Jzse[(r?[c, c])!|Vuev (Ve exsp(z)=1))
(r’[e, c])t ()=>¢)

by using Lemma 2 (both ¢ and 1 are internal) and the definition of canonical elements c“*7 := (c?,c").

= (V’LUET2[C,C]<,O(1U1):>¢) = (Vae

10. HIPye @ (Vta%p(z) =ty U(y)) = Ftys™ (VWao(z) =Ty cys U(y))
Let A := V27 p(x)= 3™ U(y) and B := Ftys™ (Vap(z)=Tycys U(y)).
G A= (0 = (d70)) = (7 x dT0)*) x (0 = (d0)")" = [d=0)* - (o x d~)")
d=A = (0 = (d0)")" x (d-0)"
4B =7 x (0 = (d50)")" = [d*0)") x (0 = (d*p)*)* = (@~ V)" = (o x d)"))
4B = (0 = (d*¢)")* x (d~0)")*
We define
U = M [((r e, (AL(rte]))?, A vr?[e,v]))] = (dTA)* — (dTB)*
= A ((c,vd) = (e, vd) - (c,val_l) =) dtA)* -d B — (dA)*

and have
YueY(r,v) uy =c  Yuew (c,uz) €Y (r,v).

For any (r,v) : (d*A)* x d~ B, we have
HIPG (07 = vuey(r,v) (Vwer[u, wlewn) = 3ye (i m) Yo euw (@) D)
= Jyse|(rtlc])|Vuew (Vw€r2[c,uQ]go(wl):>Vw€uQEly€ys|<I>(y)\g1[c])2)
& YueY(r,v) (VwETQ[c,ug]w(wl):ﬂye(Tl[c])1Vu}€u2|<I>( )|(T1[C])2)

= Yuco (VwETQ[C,uQ}w(wl):>Vw€u25|y€(T [u1])t|®(y )| rleD? )

by using Lemma 2 (¢ is internal).

10, HIPYE - (Wta7p(z) =ty v(y)) = Fys™ (Vap(z)=Jycysd(y))
We also consider a special case of HIPyst where both ¢, are internal.
Let A :=V2%p(z) = FyT(y) and B := Fys™ (Vap(z)=Iycysy(y)).
We define
U = M [((re])?t, (e, M. v.r?[e, )] @ (dTA)* = (dFB)*
Y =M vc] : (dTA)* -d B — (d”A)*



For any (r,v) : (dTA)* x d™ B, we have

“_”pivlr;tt 7[~([1;]7Y)]

Vuele] (Vwer?ur, us]o(wr) = Iy € (rlui]) Vw uzp(y))
= Jyse|(r[c])]Vuev (Vwer?[c,c]p(wr) = Yweuz Jycysi(y))
& (Ywer?le,clp(wi) = ye(ri[c]) ¥ (y))
= Yuev (Ywer?c,clo(w) = Yweus Iy € (rc]) ¥ (y))

by using Lemma 2 (both ¢, v are internal).

O

Discussion. In order to develop the Dg-interpretation for system H in Agda, we figure out the types d™® of actual
realisers and d~ @ of counterexamples of each formula ®, and then inductively define an internal formula |®|!, for any
formula ® and terms r : (dT®)* and u : d~®. Strictly following our definition, we prove (the difficult and important
part of) the soundness theorem. Our proof is less readable than the one in [4, §5] due to our formal, type-theoretic
development, but makes the Agda implementation easier. The realisers of the nonstandard axioms in our soundness
proof look different from those in [4, §5], but are essentially the same. Each nonstandard axiom is formulated as an
implication A = B and is realised by a pair (U,Y) of functions. Specifically U maps realisers of A to realisers of
B, and Y maps counterexamples of B to counterexamples of A. Both U,Y are essentially the identity map, because
realisers and counterexamples of A and B should contain the same computational information. In particular, realisers
and counterexamples of internal formulas ¢ are non-computational. Therefore, to define simpler U, Y, if an input of
type dt/ ¢ (or equivalent to dt/ ~¢) is needed, we can choose the canonical element c¢; and similarly we return c as
an output of type d*/~¢ (or equivalent to d*/~¢).
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