Munich Center for Technology in Society Technische Universitat Minchen

From Proof Theory to Proof Assistants

Challenges of Responsible Software and Al

Klaus Mainzer

Emeritus of Excellence
Technical University of Munich

Senior Professor
Eberhard Karls University of Tbingen




Munich Center for Technology in Society Technische Universitat Minchen

Incorrectness of Programs leads to Catastrophies

Dramatic accidents highlight the dangers of safety-critical systems
without software verification :

« Killed by a machine by massive overdoses of
radiation - Therac-25 1985-87

e Crash of Ariane 5 by
software failure 1996

» Software failure of Boing 737 Max 2019




Munich Center for Technology in Society Technische Universitat Minchen

Mathematical Proofs and Intuitionistic Type Theory
Intuitionistic Type Theory and Proof Assistants
Verification of Circuits in Proof Assistants: Basics
Verification of Circuits in Proof Assistants: Application
Verification of Machine Learning in Proof Assistants
Perspectives of Responsible Artificial Intelligence

o 0k w




==y
13.1'
o Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Minchen

1. Mathematical Proofs and
Intuitionistic Type Theory




.‘.-‘;" Klaus Mainzer
Technische Universitat Minchen

Curry-Howard Correspondance

In 1969, the logician W.A. Howard observed that Gentzen’s proof system of natural
deduction can be directly interpreted in its intuitionistic version as a typed variant of the

mode of computation known as lambda calculus.

According to Church, Aa. b means a function mapping an element a onto the function
value b with Aa. b[a] = b. In the following, proofs are represented by terms a, b, c, ... ;

propositions are represented by 4, B, C, ... .

. [A] [A
Examples: Aa(Ab.a) Aa.b
B- A B

() A-(B-A) (-1) A-B

A proof Is a program, and the formula it proves Is

the type for the program.




Munich Center for Technology in Society Technische Universitat Minchen

Martin-Lof‘s Intuitionistic Type Theory

In addition to the type formers of the Curry-Howard
Interpretation, the logician and philosopher P.
Martin-Lo6f extended the basic intuitionistic type
theory (containing Heyting ‘s arithmetic of higher
types HA®and Gddel‘s system T of primitive recursive
functions of higher type) with primitive identity types,
well founded tree types, universe hierarchies and
general notions of inductice and inductive—recursive

definitions.

His extension increases the proof-theoretic strength of the
theory and its application to programming as well as to
formalization of mathematics.




MCT.

Munich Center for Technology in Society

Klaus Mainzer

TUTI

Technische Universitat Miinchen

Homotopy
Type Theory

Linmipalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM
INSTITUTE FOR ADVANCED STUDY

Since their very beginning, data types play a crucial role
In computer languages:

How far can mathematical objects be
represented with types of computer
languages?

Homotopy theory is an outgrowth of algebraic topology
and homological algebra with relationships to higher

category theory which can be considered as fundamental
concepts of mathematics.

Type theory is a branch of mathematical logic and
theoretical computer science.

Homotopy type theory (HoTT) interprets types as objects of abstract
homotopy theory. Therefore, HoTT tried to develop a universal

(,, univalent*) foundation of mathematics as well as computer
language with respect to the proof assistant Cog.




Munich Center for Technology in Society Technische Universitat Minchen

Trust & Security in Mathematics

Nowadays, mathematical arguments had become so complicated that a single
mathematician rarely can examine them in detail: They trust in the expertise of
their colleagues. The situation is completely similar to modern industrial labor
world: According to the French sociologist Emile Durkheim (1858-1917), modern
industrial production is so complex that it must be organized on the principle of
division of labor and trust in expertise, but nobody has the total survey.

On the background of critical flaws overlooked by the scientific
community, Vladimir Voevodsky (1966-2017) no longer trusted in the
principle of “job-sharing”. Humans could not keep up with the ever-
Increasing complexity of mathematics. Are computers the only solution?
Thus, his foundational program of univalent mathematics is inspired
by the idea of a proof-checking software to guarantee trust & security
In mathematics.




Munich Center for Technology in Society Technische Universitat Minchen

Verification of Proofs in HOTT

HoTT allows mathematical proofs to be translated into a computer programming
language for computer proof assistants (e.g., Coq) even for advanced mathematical
categories with “isomorphism as equality”(UA). Therefore, an essential goal of HOTT is :

type checking = proof checking in higher categories

(., difficult proofs*)

Besides UA, HOTT is extended by higher inductively defined structures (e.g. inductively
defined spaces with collections of points, paths, higher paths et al.) which can be
characterized by appropriate induction principles. HoTT is consistent with respect to a
model in the category of Kan complexes (V. Voevodsky). Thus, it is consistent relative to
ZFC (with as many inaccessible cardinals which are necessary for nested univalent
universes).

But it is still an open question whether it is possible to provide a constructive justification
of the Univalence Axiom (UA).



https://en.wikipedia.org/wiki/Homotopy_type_theory#cite_note-:0-37

Munich Center for Technology in Society

Klaus Mainzer

Technische Universitat Miinchen

Intuitionistic Homotopy

Type Theory Type Theory

Proof Theory

|

Proof Assistants

(Coq, Agda, Minlog )




N ad
MC‘&(}{ Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Minchen

2. Intuitionistic Type Theory and Proof Assistant




Munich Center for Technology in Society

Terms of the Calculus of Constructions (CoC)

CoC is a type theory of Thierry Coquand et al. which can serve as typed programming language as
well as constructive foundation of mathematics. It extends the Curry-Howard isomorphism to proofs in
the full intuitionistic predicate calculus. Coc has very few rules of construction for terms:

Technische Universitat Miinchen

e Tisaterm (Type).

e Pisaterm (Prop).

e Variables (x,y, z, ...) are terms.

e If A and B are terms, then (AB) Is a term.

e If A and B are terms and x is a variable,
then Ax A.B and Vx A. B are terms.

The objects of CoC are proofs (terms with propositions as types),
propositions (small types), predicates (functions that return propositions),
large types (types of predicates, e.g., P), T (type of large types).




Inference Rules of CoC
I' is a sequence of type assignments x1: A{, x2: 44, ...; Kiseither T or P :

I'-A:K
I'-P: T I''x:AF-x: A

I'’' x: A+-B:K I'x:A + N:B
' - (AxA.N): (VxA.B):K

' -M: (Vx: A.B) - N:4
[ - MN:B[x = N|

I' - M:A AzﬁB B: K
I' - M:B




% ad
:'g? Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Minchen

Logical Operators and Data Types in CoC

Coc has very few basic operators. The only logical operator for forming
propositions is V :

A=>B =Vx:A.B (x & B)

ANB =V(C:P.(A=>B>C(C)>C
WIS AVB =V(C:P.(A=>C)=>(B=>C)>C

—A =VC:P.(A= C)

dx:A.B =VC:P.(Vx:A(B=>C))=>C

data types: booleans: VA:P.A=> A=A
naturals: VA:P.(A=> A) = (A=> A)

product 4 X B: AANB
disjointunion A+ B: AV B




Munich Center for Technology in Society Technische Universitat Minchen

Calculus of Inductive Constructions (CiC)

CiC is based on CoC enriched with inductive and co-inductive definitions with the following
rules for constructing terms:

e identifiers refer to constants or variables.
e (AB) application of a functional object 4 to B

e |x: A]B abstraction of variable x of type 4 in term B to construct a
functional object Ax € A.B

e (x:A)B term of type Set corresponds to [][,c4 B product of sets.
(x: A)B term of type Prop corresponds to Vx € A B.

If x does not occur in B, A — B Is an abbreviation which corresponds to
e set of all functions from A to B
e logical implication




Munich Center for Technology in Society Technische Universitat Minchen

Inductive Types in CIC*

An inductive type is freely generated by a certain number of constructors.

Examples: a) Type N of natural numbers with constructors
e O:N
e succ:N - N
b) Type List(A) of finite lists of elements of type 4 with constructors
e nil: List(A4)
e cons: A — List(A4) — List(4)

Inductive proofs make it possible to prove statements for infinite collections of
objects (e.g., integers, lists, binary trees), because all these objects are
constructed In a finite number of steps.

An induction principle of an inductive type proves a statement for a type freely
generated by its constructors.

* C. Paulin-Mohring (1993), Inductive Definition in the System Coq: Rules and Properties (Research Report 92-49, LIP-ENS Lyon)




Munich Center for Technology in Society Technische Universitat Minchen

Co-Inductive Types in CIC*

Besides inductive types, there are co-inductive types concerning infinite objects
(e.g., potentially infinite lists, potentially infinite trees with infinite branches).

Terms are still be obtained by repeated uses of constructors such as in inductive
types. However, there is no induction principle and the branches may be infinite.

In practical domains such as telecommunication, energy, or transportation, streams
are examples with infinite execution which are defined by constructor Cons:

CoInductive Stream (A : Set) : Set :=
Cons : A > Stream A —» Stream A

Contrary to the inductive type of a 1ist, there is no constructor of the
empty list. Thus, finite lists cannot be constructed.

* E. Giménez (1996), Un calcul de constructions infinies et son application a la veérification de systemes communicants (PhD thesis Lyon)



Munich Center for Technology in Society Technische Universitat Minchen

Equivalence of Streams in CiC

Accessors of a stream 1 are defined by functions on the structure of the stream with head
hd and tail t1:

Definition Head: Stream — A := [l] Cases 1 of (Cons hd _ ) = hd end.

Definition Tail: Stream — Stream := [l1l] Cases 1 of (Cons _ tl) = tl
end.

Two streams 1 and 1 ' are equivalent iff their heads are equal and their tails are equivalent. In
CiC, equivalence of streams is represented by a co-inductive definition:

CoInductive EgS : Stream — Stream — Prop := egs : (1 , 1' : Stream)
(Head 1) = (Head 1') -

(EgS (Tail 1) ( Tail 1V')) -
(EgSs 1 1V).




Munich Center for Technology in Society Technische Universitat Minchen

Production of Streams in CiC

The mapping of a given function f on two streams I and I’ is co-recursively defined in CiC:

CoFixpoint Map2 : (A, B, C : Set)
(A - B > C) » (Stream A) —» (Stream B) — (Stream C) :=

[A, B, £, 1, 1%]
(Cons (f (Head 1) (Head 1')) (Map2 £ (Tail 1) (Tail 1')))

The function Prod builds the stream of the pairs, element by element, of two streams of type
(Stream A) and (Stream B) respectively. Prod is the result of the application Map?2 to the

function (pair A B), where pair is the constructor of the cartesian product 4 x B. In CiC, Prod is
represented by:

Definition Prod := [A, B : Set] (Map2 (pair A B ))




The Cog Proof Assistant™

Cog implements a program specification which is based on the Calculus of Inductive
Constructions (CiC) combining both a higher-order logic and a richly-typed functional
language.

Technische Universitat Minchen

The commands of Coq allow

to define functions or predicates (that can be evaluated efficiently)
to state mathematical theorems and software specifications

to interactively develop formal proofs of these theorems

to machine-check these proofs by a relatively small certification (kernel)
to extract certified programs to languages (e.g., Objective Caml, Haskell,
Scheme)

Coq provides interactive proof methods, decision and semi-decision algorithms.
Connections with external theorem provers is available.

Coq is a platform for the verification of mathematical proofs as well as

the verification of computer programs in CiC.

*Y. Bertot, P. Castéran (2004), Interactive Theorem Proving and Program Development: Coq°‘Art: CiC (Springer)



N o
ﬁ(f Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Minchen

3. Verification of Circuits in Proof Assistants: Basics




Munich Center for Technology in Society Technische Universitat Minchen

Verification of Circuits with Co-Induction in Coq

A hardware or software program is correct (,,certified by Cog*) if it can be

verified to follow a given specification in CIC.

Example: Verification of circuits*

The structure and behaviour of circuits can mathematically be described
by interconnected finite automata (e.g., Mealy machines). In circuits, one
has to cope with infinitely long temporal sequences of data (streams).

A circuit 1s correct iff, under certain conditions, the output stream of the
structural automaton is equivalent to that of the behavioural automaton.

Therefore, automata theory must be implemented into CiC with the
co-inductive type of streams.

* S. Coupet-Grimal, L. Jakubiec (1996): Coq and Hardware Verification: a Case Study (TPHOLs ,96, LCNS 1125, 125-139)




Munich Center for Technology in Society Technische Universitat Minchen

Specification of Mealy Automata

A Mealy automaton is a 5-tuple (1, 0, S Trans, Out) with input set I, output set

O, state set §, transition function Trans: I xS — S, and output function
Out: IxS - 0.

—

Out } —

i ;[ Trans } o S

Given an initial state s , the Mealy machine computes an infinite output
sequence (,,stream*) in response to an infinite input sequence (,,stream*).




Munich Center for Technology in Society

Implementation of Mealy Automata in CiC

Technische Universitat Miinchen

Variables I, O, S : Set .
Variable Trans : I - S — S.
Variable Out : I - S — O.

CoFixpoint Mealy : (Stream I) > S —» (Stream O) := [inp, s]
(Cons (Out (Head inp) s) (Mealy (Tail inp) (Trans (Head inp) s)).

The first element of the output stream is the result of the application of the output function Out to
the first input (the head of the input stream inp) and to the initial state s. The tail of the output
stream iIs then computed by a recursive call to Mealy on the tail of the input stream and the new
state. This new state is given by the function Trans, applied to the first input and the initial state.

The streams of all the successive states from the initial one s is obtained similarily:

CoFixpoint States : (Stream I) > S —» (Stream S) := [inp, s]

(Cons s (States (Tail inp) (Trans (Head inp) s))).




MC;‘. | Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Minchen

Network of Automata

In a network, automata are inter-connected by parallel composition, sequential composition,
and feedback composition of synchronous sequential devices.

| Al
, Trans1 s1 "| Outl |
f1(@)
i l f \’I * " output—— O
f2(9)
Trans?2 s2 Out?2 |—
| A2

In the parallel composition of two Mealy automata A1 and A2, f = (f1, f>2)
builds from the current input i the pair of inputs (f1(i), f»(i)) for A1 and
A2, output computes the global outputs of A1 and A2.




Munich Center for Technology in Society Technische Universitat Minchen

Implementation of Parallel Automata in CiC

Variables I1, I2, 01, 02, S1, S2, I. O : Set

Variable Transl : Il —» S1 —» Sl1. Variable Trans2 : I2 —» S2 — S2.
Variable Outl : I1 - S1 — Ol. Variable Out2 : I2 - S2 - 02.
Variable £ : I - I1l*I2. Variable £ : O —» 01*02.

Local Al := (Mealy Transl Outl). Local A2 := (Mealy Trans2 Out2).

Definition parallel : (Stream I) » S1 —» S2 := [inp, sl1l, s2]
(Map output (Prod (Al (Map Fst (Map f inp)) sl)
(A2 (Map Snd (Map f inp)) s2))).

The initial states of automata A1 and A2 are s1 and s2. The input of A1 is obtained by
mapping the first projection Fst on the stream resulting from the mapping of the function f
on the global stream inp. Then (A1(Map Fst (Map f inp))s1) is the output stream A1. That

of A2 is defined similarly. Finally, the parallel composition is obtained by mapping the function
output on the product of the output streams of A1 and A2.




Munich Center for Technology in Society Technische Universitat Minchen

Invariant Relations of Mealy Automata*

The equivalence of structure and behaviour of circuits can be proved by certain
Invariant relations of states and streams in the corresponding Mealy automata.

Consider two Mealy automata A1 = (1,0,S{, Trans1,0utl) and A2 = (1,0, S,, Trans2, Out2) with the
same input set and the same output set. Given p streams, a relation which holds for all p-tuples of
elements at the same rank is called an invariant of these p streams.

In CiC, an invariant relation P with respect to input set I and the state sets $; and S, can be definied by
co-induction:

CoInductive Inv [P : I —» S1 —» S2 — Prop]
(Stream I) » (Stream S1) » (Stream S2) —» Prop :=
CInv : (inp : (Stream I)) (stl : (Stream S1)) (st2 : (Stream S2))

(P (Head inp) (Head stl) (Head st2)) —
(Inv P (Tail inp) (Tail stl) (Tail st2)) —
(Inv P inp stl st2).

*S. Coupet-Grimal, L. Jakubier, Hardware Verification using co-induction in Coq (Laboratoire d‘Informatique de Marseille, URA CNRS 1787)



Munich Center for Technology in Society Technische Universitat Minchen

Invariant State Relation of Mealy Automata in CiC

Let R be a relation on the state space $; X S, and P a relationon I X §; X S5.

R 1s Invariant under P for the automata A1 and A2 iff

ViEIv51651VSZESZ
(P(i, s1, S2) ANR(s1, s2)) = R(Trans1 (i,sq), Trans2 (i, s;)).

The invariance of relation R can be implemented into CIC :

Definition Inv under := [P : I—> S1—-> S2—- Prop][R : S1—-S2 - Prop]
(1 : I)(sl : S1) (s2 : S2)
(P 1 s1 s2) > (R sl s2) (R (Trans 1 i sl) (Trans2 i s2).

An output relation is strong enough to induce the equality of the outputs of two automata:

Definition Output rel := [R : S1—> S2 - Prop]

(1 : I)(sl : S1) (s2 : S2)
(R sl s2) > (Outl 1 sl)=(0Out2 i s2).




Munich Center for Technology in Society Technische Universitat Minchen

Proof Scheme for Circuit Correctness.

The correctness of a circuit is proved by the equivalence of its structure and behaviour which are
represented by two composed Mealy automata. The equivalence of composed Mealy automata can
be proved by the equivalence lemma of invariant relations (which is also represented in CiC) :

If R is an output relation invariant under P that holds for the initial
states, If P Is an invariant for the common input stream and the state
streams of each automata, then the two output streams are equivalent.

Lemma Equiv 2 Mealy :

(P : I »>8S1 - S2 —» Prop)(R : S1 » S2 — Prop)

(Output rel R) - (Inv_under P R) - (R sl s2) —

(inp : (Stream I)) (sl : S1) (s2 : S2)

(Inv P inp (States Transl Outl inp sl) (States Trans2 Out2 inp s2)) —
(EgS (Al inp sl) (A2 inp s2)).

Proof by co-induction




o od
13.1'
o Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Minchen

4. Verification of Circuits in Proof Assistants: Application




Munich Center for Technology in Society Technische Universitat Minchen

Certification of a 4 by 4 Switch Fabric

A switch fabric is a network topology in which nodes interconnect via
one or more switches. The switching element performs switching of data
from 4 input ports to 4 output ports and arbitrating data clashes
according to the output port requests made by the input ports.*

The most significant part for verification is the Arbitration Unit. It
decodes requests from input ports and priorities between data to be sent,
and then performs arbitration.

* Local area network based on ATM (Systems Research Group, Cambridge University)




Munich Center for Technology in Society Technische Universitat Minchen

Structure of the Arbitration Unit

The arbiration unit Is the interconnection of three modules:

e FOUR_ARBITERS performs the arbitration for all output ports
(following Round Robin algorithm)

e TIMING determines when the arbitration process can be triggered.

e PRIORITY_DECODE decodes the requests and filters them according to
their priority

act 4

4% 2

TIMING ] routeEnable
I J 1
— (Grant

pri — PRIORITY_DECODI:jﬂ.[ FOUR_ARBITERS
route L 4% 4 J—— output Disable
4% 2 4




MCT

Munich Center for Technology in Society

1)

(2)

(3)

(4)

()

(6)

Klaus Mainzer m

Technische Universitat Minchen

Outline of the Proof of Correctness*

The correctness of a switch fabric requires an equivalence proof of its structural automaton and behavioural
automaton. It follows from the verification of its modules that compose the Arbitration unit.

Proof that the behavioural automata for TIMING, FOUR_ARBITERS, and PRIORITY_DECODE
are equivalent the three corresponding structural automata.

Construction of the global structural automaton structure_ARBITRATION by interconnecting the structural
automata of the the three modules TIMING, FOUR_ARBITERS, and PRIORITY_DECODE .

Construction of the global behavioural automaton Composed_Behaviours by interconnecting the behavioural
automata of the the three modules TIMING, FOUR_ARBITERS, and PRIORITY_DECODE .

Proof that Composed_Behaviours and structure_ARBITRATION are equivalent ( which follows from (1)
and by applying the lemmas stating that the equivalence of automata is a congruence for the composition rules).

Proof that Composed_Behaviours is equivalent to the expected behaviour Behaviour_ARBITRATION.
(Composed_Behaviours is more abstract than structure_ARBITRATION )

The equivalence of Behaviour_ARBITRATION and structure_ARBITRATION is obtained from (4) and (5)
by using the transitivity of of the equivalence on the streams.

* S. Coupet-Grimal, L. Jakubier, Hardware Verification using co-induction in Coq (Laboratoire d‘Informatique de Marseille, URA CNRS 1787)



Munich Center for Temwlmm/—-mmrsitat Miinchen

Advantages of the Coq Proof Assistent
for Verification of Software/Hardware

e In Coq, a verification of a computer program is as strong and save as a
mathematical proof in a constructive formalism.

e The use of Coqg dependent types provide precise and reliable
specifications.

* The use of Coqg co-inductive types provide a clear modelling of streams in
circuits (without introducing any temporal parameter).

* The use of Coq co-induction allows to capture the temporal aspects of the
proof processes in one lemma.

e The hierarchical and modular approach allows correctness results in a
complex verification process related to pre-proven components.




N ad
MC‘&(}{ Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Minchen

5. Verification of Machine Learning in Proof Assistants




Munich Center for Technology in Society Technische Universitat Minchen

Neural Networks and Learning Algorithms

Neural networks are complex systems of firing and non-firing neurons with topologies
like brains. There is no central processor (,mother cell‘), but a self-organizing
information flow in cell-assemblies according to rules of synaptic interaction (,synaptic

outputs

plasticity ).o — outputs

inputs inputs

input

Feedforward with one Feedforward with two synaptic Feedba(fk ;f recurrent
synaptic layer layers (Hidden Units) neural network (RNN)

k Klaus Mainzer

g, Kiinstliche

Error Intelligenz —Wann

Learning algorithms: i AL
* supervised \ ol
- non-supervised [y~ B
* reinforcement =

« deep learning




==y
13.1'
o Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Miinchen
Equivalence of Neural Networks, Automata, and Machines
m I N O recognition of
.l it s computable (,regular<)
digital McCulloch-Pitts net finite automaton languages

with integer weights

outputs read/write head

T I/I — recognition of
: . *%
J computable (,recursive*)
control storage
unit languages
inputs Turing machine (Chomsky grammar)
digital net
with rational weights
read/write head
outputs ~ _ -
T T T T T 0T T T T T 1T~ recognition of incomputable
. **k*
control o (non-recursive) languages
il (natural languages)

Oracle (polynomially
inputs restricted

analog recurrent net

with real weights Turing oracle machine

*S.C. Kleene (1956); **, *** H.T. Siegelmann, E.D. Sontag (1995), (1994); K. Mainzer (2018)



Verification of Neural Networks
and Learning Algorithms

Technische Universitat Miinchen

Digital neural networks are equivalent to appropriate automata
(with respect to certain cognitive tasks).

The structure and behaviour of automata can be implemented
Into the Calculus of inductive Constructions (CiC).

Thus, In principle, their equivalence could verify the correctnesss

of circuits of automata and, therefore, the correctness of neural
networks in Cog.

Even analog neural networks (with real weights) could be
Implemented into CiC extended by higher inductively defined
structures in HoTT to verify their correctness in Cog.




Munich Center for Technology in Society Technische Universitat Minchen

Machine Learning and Autonomous Cars

A simple robot with diverse sensors (e.g., proximity, light, collision) and motor
equipment can generate complex behavior by a self-organizing neural network:

- Proximity

&
i J
Ll ISR,
<40 a5k = >

In the case of collision, the connections between the active nodes of proximity and
collision layer are reinforced bv Hebbean learnina: A behavioral pattern emerges!

Motor Action

/- al )
Collision (5 €8 (3§
Layer

Proximity € @ () |
Layer

el ‘ Pfeifer/Scheier 1999




Munich Center for Technology in Society Technische Universitat Minchen

Explosion of Parameters and Big
Data generates a Black Box:

How many real world
accidents are required to
teach machine-learning
based autonomous
vehicles?

Who should be responsible
when there is an accident
involving autonomous

i vehicles (ethical and legal
challenges)?

“Does your car have any idea why my car pulled it over?”

We need provability, explainability and accountability of
neural networks!




Munich Center for Technology in Society Technische Universitat Minchen

Blindness of Machine Learning and Big Data

Without explanation, big neural networks with large
statistical training data (Blg Data) are black boxes.

Statistical data correlations do not replace

explanations of causes and effects.

Their evaluation needs causal modeling for
answering guestions of accountability and

responsibility.




\. of
13.1'
[ | Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Minchen

Causal Modeling and Machine Learning

causal learning observations &

outcomes incl.
) changes &

causal reasoning \interV@ntiOnS )

[causal model

subsumes subsume

statistical learning

A 4

[probabilistic model observations
) & outcomes

statistical reasoning

v

Peters et al. 2017, p. 6




Munich Center for Technology in Society Technische Universitat Minchen

Correctness of Certified Programs with Proof Assistants

A program is correct (,,certified*) if it can be
‘ verified to follow a given specification.

Implementation

l Therefore, proof assistants are the best formal

,» Waterfall« _ verification of correctness for certified programs.

of development
in software engineering

A proof assistant proves the correctness of
a computer program in a consistent
formalism like a constructive proof in
mathematics (e.g., Coq, Agda, MinLog).

Maintenance




Munich Center for Technology in Society Technische Universitat Minchen

Responsible Al in Autonomous Car Driving with
Causal Learning and Proof Assistant

proof assistant

A f1 fz fk
/\ ¢i — o—pPo—P0 ... *——>e
_q causal model of behavior
= formal A
N implication
formalization . causal learning
black box
recording

Convention of Traffic -
should impl &
(Vienna 1968) Py O O

behavior of autonomous car




Munich Center for Technology in Society Technische Universitat Minchen

Certified Programs with Theorem Proving

and Causal Learning
Statistical machine learning works,
but we can’t understand the underlying

reasoning.

Machine learning technique is akin to testing,

but it is not enough for safety-critical systems.

—> Combination of causal learning and
constructive Al with certified programs
(theorem proving and causal learning)




Munich Center for Technology in Society Technische Universitat Minchen

6. Perspectives of Responsible Artificial Intelligence




MCTS

Klaus Mainzer m

Munich Center for Technology in Society Technische Universitat Miinchen

Internet of Things with Exploding Data

stock market: flash trade,

blockchain
smart City: Intelligent network

of mobility

predictive analytics:

personalized medicine Earth system

smart grids for optimizin
energetic networks

predictions of human
behavior (e.g., precriming)

industry 4.0: industrial
internet




Munich Center for Technology in Society

Technische Universitat Miinchen

We need more explainability, verification,

and governance of machine learning and

Big Data to master the increasing
complexity of our civilization!




Munich Center for Technology in Society

Kiinstliche Intelligenz — Wann iibernehmen die
Maschinen?

Jeder kennt sie. Smartphones, die mit uns sprechen, Armband-
uhren, die unsere Gesundheitsdaten aufzeichnen, Arbeitsabliufe,
die sich automatisch organisieren, Autos, Flugzeuge und Droh-
nen, die sich selber steuern, Verkehrs- und Energiesysteme mit
autonomer Logistik oder Roboter, die ferne Planeten erkunden,
sind technische Beispiele einer vernetzten Welt intelligenter Sys-
teme. Sie zeigen uns, dass unser Alltag bereits von KI-Funktionen
bestimmt ist.

Auch biologische Organismen sind Beispiele von intelligenten
Systemen, die in der Evolution entstanden und mehr oder weni-
ger selbststindig Probleme effizient 16sen konnen. Gelegentlich
ist die Natur Vorbild fiir technische Entwicklungen. Haufig fin-
den Informatik und Ingenieurwissenschaften jedoch Losungen,
die sogar besser und effizienter sind als in der Natur.

Seit ihrer Entstehung ist die KI-Forschung mit grofien Visionen
uber die Zukunft der Menschheit verbunden. Lost die , kiinstliche
Intelligenz® also den Menschen ab? Dieses Buch ist ein Pladoyer
fiir Technikgestaltung: KI muss sich als Dienstleistung in der Ge-
sellschaft bewihren.

ISBN 978-3-662-48452-4

524‘

7836620484

» springer.com

Klaus Mainzer

;UBUIYISRI 31p U3WY3UIGN UUBA — ZUbij[3)u] aypIjIsuny |@

Klaus Mainzer

Kunstliche
Intelligenz —Wann
ibernehmen

die Maschinen?

-~ -

/ /‘/ N
N\ "~
5 5’ !\

@ Springer

TUTI

Technische Universitat Minchen




MCTS

Munich Center for Technology in Society

Klaus Mainzer

Klaus Mainzer
Die Berechnung der Welt
Von der Weltformel

zu Big Data

C.H.Beck

bu}:p«wnsrrv FRESS

KLAUS MAINZER

INFORMATION

ALGORITHMUS - WAHRSCHEINLICHKEIT
KOMPLEXITAT - QUANTENWELT - LEBEN
GEHIRN - GESELLSCHAFT

TUTI

Technische Universitat Miinchen




M Klaus Mainzer

Munich Center for Technology in Society Technische Universitat Minchen

= The Dicitai and -
| and the Real World kel Worll }esse ntla IS{

e . Computational Foundations of Mathematics,
In the 21st century, digitalization is a global challenge of mankind. Even

for the public, it is obvious that our world is increasingly dominated by Science, Technology, and Philosophy
powerfulalgorithms and big data. But, how computable is our world? Some ~

people believe that successful problem solving in science, technology,

and economies only depends on fast algorithms and data mining.

Chances and risks are often not understood, because the foundations of

algorithms and information systems are not studied rigorously. Actually,

they are deeply rooted in logics, mathematics, computer science and

philosophy. v a A i Y = 2
Therefore, this book studies the foundations of mathematics, computer ) e - E 3 e I ‘ ‘ r‘ C ‘ n a r

science, and philosophy, in order to guarantee security and reliability
of the knowledge by constructive proofs, proof mining and program
extraction. We start with the basics of computability theory, proof theory,

3 ) i i - . > . ‘ X ! : pe
and information theory. In a second step, we introduce new concepts Sy T o X 3 el o , t 3
of information and computing systems, in order to overcome the s Pt o P : - 3 3
gap between the digital world of logical programming and the analog 3 ¥ S 4 3 "

world of real computing in mathematics and science. The book also
considers consequences for digital and analog physics, computational
neuroscience, financial mathematics, and the Internet of Things (loT).

[ey oY) pue

Klaus Mainzer

|MELY

'- \)/ \{ v >/

=

World Scientific
www.worldscientific.com \\P World Scientific

10583 he




