
Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

From Proof Theory to Proof Assistants

Klaus Mainzer

Emeritus of Excellence

Technical University of Munich

Senior Professor

Eberhard Karls University of Tübingen

Challenges of Responsible Software and AI

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Incorrectness of Programs leads to Catastrophies

Killed by a machine by massive overdoses of

radiation - Therac-25 1985-87

Crash of Ariane 5 by

software failure 1996

Dramatic accidents highlight the dangers of safety-critical systems

without software verification :

Software failure of Boing 737 Max 2019

•

•

•

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

1. Mathematical Proofs and Intuitionistic Type Theory

2. Intuitionistic Type Theory and Proof Assistants

3. Verification of Circuits in Proof Assistants: Basics

4. Verification of Circuits in Proof Assistants: Application

5. Verification of Machine Learning in Proof Assistants

6. Perspectives of Responsible Artificial Intelligence

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

1. Mathematical Proofs and

Intuitionistic Type Theory

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Curry-Howard Correspondance
In 1969, the logician W.A. Howard observed that Gentzen’s proof system of natural

deduction can be directly interpreted in its intuitionistic version as a typed variant of the

mode of computation known as lambda calculus.

According to Church, 𝝀𝒂. 𝒃 means a function mapping an element 𝒂 onto the function

value 𝒃 with 𝝀𝒂. 𝒃[𝒂] = 𝒃. In the following, proofs are represented by terms 𝒂, 𝒃, 𝒄, … ;

propositions are represented by 𝑨, 𝑩, 𝑪, … .

[A]

λ𝑎(λ𝑏. 𝑎) ⋮
𝐵 → 𝐴

(→ I) 𝐴 → (𝐵 → 𝐴)

[A]

λ𝑎. 𝑏 ⋮
𝐵

(→ I) 𝐴 → 𝐵

Examples:

A proof is a program, and the formula it proves is

the type for the program.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Martin-Löf‘s Intuitionistic Type Theory

In addition to the type formers of the Curry-Howard

interpretation, the logician and philosopher P.

Martin-Löf extended the basic intuitionistic type

theory (containing Heyting‘s arithmetic of higher

types 𝐇𝐀𝝎and Gödel‘s system 𝐓 of primitive recursive

functions of higher type) with primitive identity types,

well founded tree types, universe hierarchies and

general notions of inductice and inductive–recursive

definitions.

His extension increases the proof-theoretic strength of the

theory and its application to programming as well as to

formalization of mathematics.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Since their very beginning, data types play a crucial role

in computer languages:

How far can mathematical objects be

represented with types of computer

languages?

Homotopy theory is an outgrowth of algebraic topology

and homological algebra with relationships to higher

category theory which can be considered as fundamental

concepts of mathematics.

Type theory is a branch of mathematical logic and

theoretical computer science.

Homotopy type theory (HoTT) interprets types as objects of abstract

homotopy theory. Therefore, HoTT tried to develop a universal

(„univalent“) foundation of mathematics as well as computer

language with respect to the proof assistant Coq.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Trust & Security in Mathematics

Nowadays, mathematical arguments had become so complicated that a single

mathematician rarely can examine them in detail: They trust in the expertise of

their colleagues. The situation is completely similar to modern industrial labor

world: According to the French sociologist Emile Durkheim (1858-1917), modern

industrial production is so complex that it must be organized on the principle of

division of labor and trust in expertise, but nobody has the total survey.

On the background of critical flaws overlooked by the scientific

community, Vladimir Voevodsky (1966-2017) no longer trusted in the

principle of “job-sharing”. Humans could not keep up with the ever-

increasing complexity of mathematics. Are computers the only solution?

Thus, his foundational program of univalent mathematics is inspired

by the idea of a proof-checking software to guarantee trust & security

in mathematics.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Verification of Proofs in HoTT

HoTT allows mathematical proofs to be translated into a computer programming

language for computer proof assistants (e.g., Coq) even for advanced mathematical

categories with “isomorphism as equality”(UA). Therefore, an essential goal of HoTT is :[

type checking ⇒ proof checking in higher categories
(„difficult proofs “)

Besides UA, HoTT is extended by higher inductively defined structures (e.g. inductively

defined spaces with collections of points, paths, higher paths et al.) which can be

characterized by appropriate induction principles. HoTT is consistent with respect to a

model in the category of Kan complexes (V. Voevodsky). Thus, it is consistent relative to

ZFC (with as many inaccessible cardinals which are necessary for nested univalent

universes).

But it is still an open question whether it is possible to provide a constructive justification

of the Univalence Axiom (UA).

https://en.wikipedia.org/wiki/Homotopy_type_theory#cite_note-:0-37

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Proof Theory

Proof Assistants

(Coq, Agda, Minlog)

Intuitionistic

Type Theory

Homotopy

Type Theory

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

2. Intuitionistic Type Theory and Proof Assistant

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Terms of the Calculus of Constructions (CoC)
CoC is a type theory of Thierry Coquand et al. which can serve as typed programming language as

well as constructive foundation of mathematics. It extends the Curry-Howard isomorphism to proofs in

the full intuitionistic predicate calculus. Coc has very few rules of construction for terms:

• T is a term (Type).

• P is a term (Prop).

• Variables (𝒙, 𝒚, 𝒛, …) are terms.

• If 𝑨 and 𝑩 are terms, then (𝑨𝑩) is a term.

• If 𝑨 and 𝑩 are terms and 𝒙 is a variable,

then 𝝀𝒙 𝑨. 𝑩 and ∀𝒙 𝑨. 𝑩 are terms.

The objects of CoC are proofs (terms with propositions as types),

propositions (small types), predicates (functions that return propositions),

large types (types of predicates, e.g., P), T (type of large types).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Inference Rules of CoC
𝚪 is a sequence of type assignments 𝒙𝟏: 𝑨𝟏, 𝒙𝟐: 𝑨𝟐, …; 𝐊 is either T or P :

𝚪 ⊢ 𝑷∶ 𝑻

𝚪 ⊢ 𝑨:𝑲

𝚪,𝒙∶ 𝑨 ⊢ 𝒙∶ 𝑨

𝚪, 𝒙 ∶ 𝑨 ⊢ 𝑩: 𝑲 𝚪, 𝒙: 𝑨 ⊢ 𝑵: 𝑩

𝚪 ⊢ 𝝀𝒙 𝑨. 𝑵 : ∀𝒙 𝑨. 𝑩 : 𝑲

𝚪 ⊢ 𝑴 ∶ ∀𝒙: 𝑨. 𝑩 𝚪 ⊢ 𝑵: 𝑨

𝚪 ⊢ 𝑴𝑵: 𝑩[𝒙 ≔ 𝑵]

𝚪 ⊢ 𝑴: 𝑨 𝑨 =𝜷 𝑩 𝑩: 𝑲

𝚪 ⊢ 𝑴: 𝑩

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Logical Operators and Data Types in CoC

Coc has very few basic operators. The only logical operator for forming

propositions is ∀ :∀

𝐴 ⇒ 𝐵 ≡ ∀𝑥: 𝐴. 𝐵 𝑥 ∉ 𝐵
𝐴 ∧ 𝐵 ≡ ∀𝐶: 𝑃. (𝐴 ⇒ 𝐵 ⇒ 𝐶) ⇒ 𝐶
𝐴 ∨ 𝐵 ≡ ∀𝐶: 𝑃. (𝐴 ⇒ 𝐶) ⇒ 𝐵 ⇒ 𝐶 ⇒ 𝐶
¬𝐴 ≡ ∀𝐶: 𝑃. 𝐴 ⇒ 𝐶
∃𝑥: 𝐴. 𝐵 ≡ ∀𝐶: 𝑃. (∀𝑥: 𝐴(𝐵 ⇒ 𝐶)) ⇒ 𝐶

data types: booleans: ∀𝑨: 𝑷. 𝑨 ⇒ 𝑨 ⇒ 𝑨
naturals: ∀𝑨: 𝑷. (𝑨 ⇒ 𝑨) ⇒ (𝑨 ⇒ 𝑨)
product 𝑨 × 𝑩: 𝑨 ∧ 𝑩
disjoint union 𝑨 + 𝑩: 𝑨 ∨ 𝑩

logical operators:

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Calculus of Inductive Constructions (CiC)
CiC is based on CoC enriched with inductive and co-inductive definitions with the following

rules for constructing terms:

• identifiers refer to constants or variables.

• (𝑨𝑩) application of a functional object 𝑨 to 𝑩

• 𝒙: 𝑨 𝑩 abstraction of variable 𝒙 of type 𝑨 in term 𝑩 to construct a

functional object 𝝀𝒙 ∈ 𝑨. 𝑩
• 𝒙: 𝑨 𝑩 term of type Set corresponds to ς𝒙∈𝑨 𝑩 product of sets.

𝒙: 𝑨 𝑩 term of type Prop corresponds to ∀𝒙 ∈ 𝑨 𝑩.

If 𝒙 does not occur in 𝑩, 𝑨 → 𝑩 is an abbreviation which corresponds to

• set of all functions from 𝑨 to 𝑩
• logical implication

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Inductive Types in CiC*

An inductive type is freely generated by a certain number of constructors.

Examples: a) Type ℕ of natural numbers with constructors

• 𝟎: ℕ
• 𝐬𝐮𝐜𝐜: ℕ → ℕ

b) Type 𝐋𝐢𝐬𝐭(𝑨) of finite lists of elements of type 𝑨 with constructors

• 𝐧𝐢𝐥: 𝐋𝐢𝐬𝐭(𝑨)
• 𝐜𝐨𝐧𝐬: 𝑨 → 𝐋𝐢𝐬𝐭(𝑨) → 𝐋𝐢𝐬𝐭(𝑨)

Inductive proofs make it possible to prove statements for infinite collections of

objects (e.g., integers, lists, binary trees), because all these objects are

constructed in a finite number of steps.

An induction principle of an inductive type proves a statement for a type freely

generated by its constructors.

* C. Paulin-Mohring (1993), Inductive Definition in the System Coq: Rules and Properties (Research Report 92-49, LIP-ENS Lyon)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Co-Inductive Types in CiC*
Besides inductive types, there are co-inductive types concerning infinite objects

(e.g., potentially infinite lists, potentially infinite trees with infinite branches).

Terms are still be obtained by repeated uses of constructors such as in inductive

types. However, there is no induction principle and the branches may be infinite.

CoInductive Stream (A : Set) : Set :=

Cons : A → Stream A → Stream A

Contrary to the inductive type of a list, there is no constructor of the

empty list. Thus, finite lists cannot be constructed.

In practical domains such as telecommunication, energy, or transportation, streams

are examples with infinite execution which are defined by constructor Cons:

* E. Giménez (1996), Un calcul de constructions infinies et son application à la vérification de systèmes communicants (PhD thesis Lyon)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Equivalence of Streams in CiC

Accessors of a stream l are defined by functions on the structure of the stream with head

hd and tail tl:

Definition Head: Stream → A := [l] Cases l of (Cons hd _) ⇒ hd end.

Definition Tail: Stream → Stream := [l] Cases l of (Cons _ tl) ⇒ tl

end.

Two streams l and l‘ are equivalent iff their heads are equal and their tails are equivalent. In

CiC, equivalence of streams is represented by a co-inductive definition:

CoInductive EqS : Stream → Stream → Prop := eqs : (l , l‘ : Stream)

(Head l) = (Head l‘) →

(EqS (Tail l)(Tail l‘)) →
(EqS l l‘).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Production of Streams in CiC
The mapping of a given function 𝒇 on two streams 𝒍 and 𝒍′ is co-recursively defined in CiC:

CoFixpoint Map2 : (A, B, C : Set)

(A → B → C) → (Stream A) → (Stream B) →(Stream C) :=

[A, B, f, l, l‘]

(Cons (f (Head l)(Head l‘))(Map2 f (Tail l)(Tail l‘)))

The function 𝑷𝒓𝒐𝒅 builds the stream of the pairs, element by element, of two streams of type

(𝑺𝒕𝒓𝒆𝒂𝒎 𝑨) and (𝑺𝒕𝒓𝒆𝒂𝒎 𝑩) respectively. 𝑷𝒓𝒐𝒅 is the result of the application 𝑴𝒂𝒑𝟐 to the

function (𝒑𝒂𝒊𝒓 𝑨 𝑩), where 𝒑𝒂𝒊𝒓 is the constructor of the cartesian product 𝑨 ∗ 𝑩. In CiC, 𝑷𝒓𝒐𝒅 is

represented by:

Definition Prod := [A, B : Set] (Map2 (pair A B))

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

The Coq Proof Assistant*
Coq implements a program specification which is based on the Calculus of Inductive

Constructions (CiC) combining both a higher-order logic and a richly-typed functional

language.

The commands of Coq allow

- to define functions or predicates (that can be evaluated efficiently)

- to state mathematical theorems and software specifications

- to interactively develop formal proofs of these theorems

- to machine-check these proofs by a relatively small certification (kernel)

- to extract certified programs to languages (e.g., Objective Caml, Haskell,

Scheme)

Coq provides interactive proof methods, decision and semi-decision algorithms.

Connections with external theorem provers is available.

Coq is a platform for the verification of mathematical proofs as well as

the verification of computer programs in CiC.

* Y. Bertot, P. Castéran (2004), Interactive Theorem Proving and Program Development: Coq‘Art: CiC (Springer)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

3. Verification of Circuits in Proof Assistants: Basics

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Verification of Circuits with Co-Induction in Coq

A hardware or software program is correct („certified by Coq“) if it can be

verified to follow a given specification in CIC.

The structure and behaviour of circuits can mathematically be described

by interconnected finite automata (e.g., Mealy machines). In circuits, one

has to cope with infinitely long temporal sequences of data (streams).

A circuit is correct iff, under certain conditions, the output stream of the

structural automaton is equivalent to that of the behavioural automaton.

Example: Verification of circuits*

Therefore, automata theory must be implemented into CiC with the

co-inductive type of streams.

* S. Coupet-Grimal, L. Jakubiec (1996): Coq and Hardware Verification: a Case Study (TPHOLs ‚96, LCNS 1125, 125-139)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Specification of Mealy Automata

A Mealy automaton is a 5-tuple (𝑰, 𝑶, 𝑺 𝑻𝒓𝒂𝒏𝒔, 𝑶𝒖𝒕) with input set 𝑰, output set

𝑶, state set 𝑺, transition function 𝑻𝒓𝒂𝒏𝒔 ∶ 𝑰 𝒙 𝑺 → 𝑺, and output function

𝑶𝒖𝒕 ∶ 𝑰 𝒙 𝑺 → 𝑶 .

𝑇𝑟𝑎𝑛𝑠 𝑂𝑢𝑡𝑠𝑖

Given an initial state 𝒔 , the Mealy machine computes an infinite output

sequence („stream“) in response to an infinite input sequence („stream“).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Implementation of Mealy Automata in CiC

Variables I, O, S : Set .

Variable Trans : I → S → S.

Variable Out : I → S → O.

CoFixpoint Mealy : (Stream I) → S → (Stream O) := [inp, s]

(Cons (Out (Head inp) s) (Mealy (Tail inp)(Trans (Head inp) s)).

The first element of the output stream is the result of the application of the output function 𝑶𝒖𝒕 to

the first input (the head of the input stream 𝒊𝒏𝒑) and to the initial state 𝒔. The tail of the output

stream is then computed by a recursive call to 𝑴𝒆𝒂𝒍𝒚 on the tail of the input stream and the new

state. This new state is given by the function 𝑻𝒓𝒂𝒏𝒔, applied to the first input and the initial state.

The streams of all the successive states from the initial one 𝒔 is obtained similarily:

CoFixpoint States : (Stream I) → S → (Stream S) := [inp, s]

(Cons s (States (Tail inp)(Trans (Head inp) s))).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Network of Automata
In a network, automata are inter-connected by parallel composition, sequential composition,

and feedback composition of synchronous sequential devices.

𝑇𝑟𝑎𝑛𝑠1 𝑠1 𝑂𝑢𝑡1

𝑇𝑟𝑎𝑛𝑠2 𝑠2 𝑂𝑢𝑡2

𝑓 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑖 𝑜

𝐴1

𝐴2

In the parallel composition of two Mealy automata 𝑨𝟏 and 𝑨𝟐, 𝒇 = (𝒇𝟏, 𝒇𝟐)
builds from the current input 𝒊 the pair of inputs (𝒇𝟏(𝒊), 𝒇𝟐(𝒊)) for 𝑨𝟏 and

𝑨𝟐, 𝒐𝒖𝒕𝒑𝒖𝒕 computes the global outputs of 𝑨𝟏 and 𝑨𝟐.

𝑓1(𝑖)

𝑓2(𝑖)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Implementation of Parallel Automata in CiC

Variables I1, I2, O1, O2, S1, S2, I. O : Set

Variable Trans1 : I1 → S1 → S1. Variable Trans2 : I2 → S2 → S2.

Variable Out1 : I1 → S1 → O1. Variable Out2 : I2 → S2 → O2.

Variable f : I → I1*I2. Variable f : O → O1*O2.

Local A1 := (Mealy Trans1 Out1). Local A2 := (Mealy Trans2 Out2).

Definition parallel : (Stream I) → S1 → S2 := [inp, s1, s2]

(Map output (Prod (A1 (Map Fst (Map f inp)) s1)

(A2 (Map Snd (Map f inp)) s2))).

The initial states of automata 𝑨𝟏 and 𝑨𝟐 are 𝒔𝟏 and 𝒔𝟐. The input of 𝑨𝟏 is obtained by

mapping the first projection 𝑭𝒔𝒕 on the stream resulting from the mapping of the function 𝒇

on the global stream 𝒊𝒏𝒑. Then (𝑨𝟏 𝑴𝒂𝒑 𝑭𝒔𝒕 𝑴𝒂𝒑 𝒇 𝒊𝒏𝒑 𝒔𝟏) is the output stream 𝑨𝟏. That

of 𝑨𝟐 is defined similarly. Finally, the parallel composition is obtained by mapping the function

𝒐𝒖𝒕𝒑𝒖𝒕 on the product of the output streams of 𝑨𝟏 and 𝑨𝟐.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Invariant Relations of Mealy Automata*

The equivalence of structure and behaviour of circuits can be proved by certain

invariant relations of states and streams in the corresponding Mealy automata.

Consider two Mealy automata 𝑨𝟏 = (𝑰, 𝑶, 𝑺𝟏, 𝑻𝒓𝒂𝒏𝒔𝟏, 𝑶𝒖𝒕𝟏) and 𝑨𝟐 = (𝑰, 𝑶, 𝑺𝟐, 𝑻𝒓𝒂𝒏𝒔𝟐, 𝑶𝒖𝒕𝟐) with the

same input set and the same output set. Given 𝒑 streams, a relation which holds for all 𝒑-tuples of

elements at the same rank is called an invariant of these 𝒑 streams.

In CiC, an invariant relation 𝑷 with respect to input set 𝑰 and the state sets 𝑺𝟏 and 𝑺𝟐 can be definied by

co-induction:

CoInductive Inv [P : I → S1 → S2 → Prop] :

(Stream I) → (Stream S1) → (Stream S2) → Prop :=

C_Inv : (inp : (Stream I))(st1 : (Stream S1))(st2 : (Stream S2))

(P (Head inp) (Head st1) (Head st2)) →
(Inv P (Tail inp) (Tail st1) (Tail st2)) →
(Inv P inp st1 st2).

*S. Coupet-Grimal, L. Jakubier, Hardware Verification using co-induction in Coq (Laboratoire d‘Informatique de Marseille, URA CNRS 1787)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Invariant State Relation of Mealy Automata in CiC
Let 𝑹 be a relation on the state space 𝑺𝟏 × 𝑺𝟐 and 𝑷 a relation on 𝑰 × 𝑺𝟏 × 𝑺𝟐.

The invariance of relation 𝑹 can be implemented into CIC :

Definition Inv_under := [P : I→ S1 → S2 → Prop][R : S1 → S2 → Prop]

(i : I)(s1 : S1)(s2 : S2)

(P i s1 s2) → (R s1 s2) →(R (Trans 1 i s1)(Trans2 i s2).

An output relation is strong enough to induce the equality of the outputs of two automata:

Definition Output_rel := [R : S1 → S2 → Prop]

(i : I)(s1 : S1) (s2 : S2)

(R s1 s2) →(Out1 i s1)=(Out2 i s2).

𝑹 is invariant under 𝑷 for the automata 𝑨𝟏 and 𝑨𝟐 iff

∀𝒊 ∈ 𝑰 ∀𝒔𝟏 ∈ 𝑺𝟏 ∀𝒔𝟐 ∈ 𝑺𝟐

(𝑷(𝒊, 𝒔𝟏, 𝒔𝟐) ∧ R(𝒔𝟏, 𝒔𝟐)) ⇒ 𝑹(𝑻𝒓𝒂𝒏𝒔𝟏 (𝒊, 𝒔𝟏), 𝑻𝒓𝒂𝒏𝒔𝟐 (𝒊, 𝒔𝟐)).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Proof Scheme for Circuit Correctness.

The correctness of a circuit is proved by the equivalence of its structure and behaviour which are

represented by two composed Mealy automata. The equivalence of composed Mealy automata can

be proved by the equivalence lemma of invariant relations (which is also represented in CiC) :

If 𝑹 is an output relation invariant under 𝑷 that holds for the initial

states, if 𝑷 is an invariant for the common input stream and the state

streams of each automata, then the two output streams are equivalent.

Lemma Equiv_2_Mealy :

(P : I → S1 → S2 → Prop)(R : S1 → S2 → Prop)

(Output_rel R) → (Inv_under P R) → (R s1 s2) →
(inp : (Stream I)) (s1 : S1) (s2 : S2)

(Inv P inp (States Trans1 Out1 inp s1)(States Trans2 Out2 inp s2)) →
(EqS (A1 inp s1) (A2 inp s2)).

Proof by co-induction

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

4. Verification of Circuits in Proof Assistants: Application

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Certification of a 4 by 4 Switch Fabric

A switch fabric is a network topology in which nodes interconnect via

one or more switches. The switching element performs switching of data

from 4 input ports to 4 output ports and arbitrating data clashes

according to the output port requests made by the input ports.*

The most significant part for verification is the Arbitration Unit. It

decodes requests from input ports and priorities between data to be sent,

and then performs arbitration.

* Local area network based on ATM (Systems Research Group, Cambridge University)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Structure of the Arbitration Unit
The arbiration unit is the interconnection of three modules:

• 𝑭𝑶𝑼𝑹_𝑨𝑹𝑩𝑰𝑻𝑬𝑹𝑺 performs the arbitration for all output ports

(following Round Robin algorithm)

• 𝑻𝑰𝑴𝑰𝑵𝑮 determines when the arbitration process can be triggered.

• 𝑷𝑹𝑰𝑶𝑹𝑰𝑻𝒀_𝑫𝑬𝑪𝑶𝑫𝑬 decodes the requests and filters them according to

their priority

𝑇𝐼𝑀𝐼𝑁𝐺

𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌_𝐷𝐸𝐶𝑂𝐷𝐸 𝐹𝑂𝑈𝑅_𝐴𝑅𝐵𝐼𝑇𝐸𝑅𝑆
𝐺𝑟𝑎𝑛𝑡

𝑜𝑢𝑡𝑝𝑢𝑡 𝐷𝑖𝑠𝑎𝑏𝑙𝑒
4

4× 2
𝐼𝑡𝑅𝑒𝑞

4× 4
4

4× 2

4

1

1

routeEnable

𝑓𝑠

𝑎𝑐𝑡

𝑝𝑟𝑖
𝑟𝑜𝑢𝑡𝑒

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Outline of the Proof of Correctness*

The correctness of a switch fabric requires an equivalence proof of its structural automaton and behavioural

automaton. It follows from the verification of its modules that compose the 𝑨𝒓𝒃𝒊𝒕𝒓𝒂𝒕𝒊𝒐𝒏 unit.

(1) Proof that the behavioural automata for 𝑻𝑰𝑴𝑰𝑵𝑮, 𝑭𝑶𝑼𝑹_𝑨𝑹𝑩𝑰𝑻𝑬𝑹𝑺, and 𝑷𝑹𝑰𝑶𝑹𝑰𝑻𝒀_𝑫𝑬𝑪𝑶𝑫𝑬
are equivalent the three corresponding structural automata.

(2) Construction of the global structural automaton 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 by interconnecting the structural

automata of the the three modules 𝑻𝑰𝑴𝑰𝑵𝑮, 𝑭𝑶𝑼𝑹_𝑨𝑹𝑩𝑰𝑻𝑬𝑹𝑺, and 𝑷𝑹𝑰𝑶𝑹𝑰𝑻𝒀_𝑫𝑬𝑪𝑶𝑫𝑬 .

(3) Construction of the global behavioural automaton 𝑪𝒐𝒎𝒑𝒐𝒔𝒆𝒅_𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓𝒔 by interconnecting the behavioural

automata of the the three modules 𝑻𝑰𝑴𝑰𝑵𝑮, 𝑭𝑶𝑼𝑹_𝑨𝑹𝑩𝑰𝑻𝑬𝑹𝑺, and 𝑷𝑹𝑰𝑶𝑹𝑰𝑻𝒀_𝑫𝑬𝑪𝑶𝑫𝑬 .

(4) Proof that 𝑪𝒐𝒎𝒑𝒐𝒔𝒆𝒅_𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓𝒔 and 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 are equivalent (which follows from (1)

and by applying the lemmas stating that the equivalence of automata is a congruence for the composition rules).

(5) Proof that 𝑪𝒐𝒎𝒑𝒐𝒔𝒆𝒅_𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓𝒔 is equivalent to the expected behaviour 𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵.

(𝑪𝒐𝒎𝒑𝒐𝒔𝒆𝒅_𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓𝒔 is more abstract than 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 .)

(6) The equivalence of 𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒖𝒓_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 and 𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆_𝑨𝑹𝑩𝑰𝑻𝑹𝑨𝑻𝑰𝑶𝑵 is obtained from (4) and (5)

by using the transitivity of of the equivalence on the s𝒕𝒓𝒆𝒂𝒎𝒔.

* S. Coupet-Grimal, L. Jakubier, Hardware Verification using co-induction in Coq (Laboratoire d‘Informatique de Marseille, URA CNRS 1787)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Advantages of the Coq Proof Assistent

for Verification of Software/Hardware

• In Coq, a verification of a computer program is as strong and save as a

mathematical proof in a constructive formalism.

• The use of Coq dependent types provide precise and reliable

specifications.

• The use of Coq co-inductive types provide a clear modelling of streams in

circuits (without introducing any temporal parameter).

• The use of Coq co-induction allows to capture the temporal aspects of the

proof processes in one lemma.

• The hierarchical and modular approach allows correctness results in a

complex verification process related to pre-proven components.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

5. Verification of Machine Learning in Proof Assistants

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Neural Networks and Learning Algorithms

Feedforward with one

synaptic layer

Feedforward with two synaptic

layers (Hidden Units)

Learning algorithms:

• supervised

• non-supervised

• reinforcement

• deep learning

Feedback of recurrent

neural network (RNN)

Neural networks are complex systems of firing and non-firing neurons with topologies

like brains. There is no central processor (‚mother cell‘), but a self-organizing

information flow in cell-assemblies according to rules of synaptic interaction (‚synaptic

plasticity‘).

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Oracle (polynomially

restricted

digital net

with rational weights

analog recurrent net

with real weights

Equivalence of Neural Networks, Automata, and Machines

recognition of

computable („recursive“)

languages
(Chomsky grammar)

recognition of incomputable

(non-recursive) languages
(natural languages)

Turing machine

digital McCulloch-Pitts net

with integer weights
finite automaton

recognition of

computable („regular“)

languages

Turing oracle machine

read head

control

unit

input tape

read/write head

control

unit

storage

read/write head

control

unit

storage

*

**

* S.C. Kleene (1956); **, *** H.T. Siegelmann, E.D. Sontag (1995), (1994); K. Mainzer (2018)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Verification of Neural Networks

and Learning Algorithms

Digital neural networks are equivalent to appropriate automata

(with respect to certain cognitive tasks).

The structure and behaviour of automata can be implemented

into the Calculus of inductive Constructions (CiC).

Thus, in principle, their equivalence could verify the correctnesss

of circuits of automata and, therefore, the correctness of neural

networks in Coq.

Even analog neural networks (with real weights) could be

implemented into CiC extended by higher inductively defined

structures in HoTT to verify their correctness in Coq.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Machine Learning and Autonomous Cars

In the case of collision, the connections between the active nodes of proximity and

collision layer are reinforced by Hebbean learning: A behavioral pattern emerges!

A simple robot with diverse sensors (e.g., proximity, light, collision) and motor

equipment can generate complex behavior by a self-organizing neural network:

In the case of collision, the connections between the active nodes of proximity and

collision layer are reinforced by Hebbean learning: A behavioral pattern emerges!

A simple robot with diverse sensors (e.g., proximity, light, collision) and motor

equipment can generate complex behavior by a self-organizing neural network:

Pfeifer/Scheier 1999

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Explosion of Parameters and Big

Data generates a Black Box:

Who should be responsible

when there is an accident

involving autonomous

vehicles (ethical and legal

challenges)?

How many real world

accidents are required to

teach machine-learning

based autonomous

vehicles?

We need provability, explainability and accountability of

neural networks!

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Blindness of Machine Learning and Big Data

Without explanation, big neural networks with large

statistical training data (Big Data) are black boxes.

Statistical data correlations do not replace

explanations of causes and effects.

Their evaluation needs causal modeling for

answering questions of accountability and

responsibility.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Causal Modeling and Machine Learning

causal model

probabilistic model observations

& outcomes

observations &

outcomes incl.

changes &

interventions

subsumes subsume

causal learning

causal reasoning

statistical learning

statistical reasoning

Peters et al. 2017, p. 6

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Correctness of Certified Programs with Proof Assistants

Implementation

Requirements

Design

Verification

Maintenance

„Waterfall“

of development

in software engineering

A program is correct („certified“) if it can be

verified to follow a given specification.

A proof assistant proves the correctness of

a computer program in a consistent

formalism like a constructive proof in

mathematics (e.g., Coq, Agda, MinLog).

Therefore, proof assistants are the best formal

verification of correctness for certified programs.

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Responsible AI in Autonomous Car Driving with

Causal Learning and Proof Assistant

proof assistant

black box

recording

behavior of autonomous car

𝑓1 𝑓2 𝑓𝑘
…

causal model of behavior

causal learning

ሥ

𝑖=1

𝑛

𝜙𝑖

Convention of Traffic

(Vienna 1968)

formalization

⊨

should imply

formal

implication

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Certified Programs with Theorem Proving

and Causal Learning

Statistical machine learning works,

but we can’t understand the underlying

reasoning.

Machine learning technique is akin to testing,

but it is not enough for safety-critical systems.

⟹ Combination of causal learning and

constructive AI with certified programs

(theorem proving and causal learning)

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

6. Perspectives of Responsible Artificial Intelligence

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Internet of Things with Exploding Data

smart City: Intelligent network

of mobility

predictive analytics:

Earth system

smart grids for optimizing

energetic networks

industry 4.0: industrial

internet

predictions of human

behavior (e.g., precriming)

personalized medicine

stock market: flash trade,

blockchain

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

We need more explainability, verification,

and governance of machine learning and

Big Data to master the increasing

complexity of our civilization!

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

