Predicative Hierarchies

ABM – April 2019

Gerhard Jäger

University of Bern

Munich, April 2019

Outline of my talk

2 Predicative reducibility

Predicativty – impredicativity

Russell and Poincaré (around 1901 – 1906)

- The vicious circle principle (VCP): A definition of an object S is *impredicative* if it refers to a totality to which S belongs.
- VPC is the essential source of inconsistencies.
- The structure of the natural numbers and the principle of induction on the natural numbers (for arbitrary properties) do not require foundational justification; further sets have to be introduced by purely predicative means.

Typical impredicative definitions

• $S = \{ n \in \mathbb{N} : (\forall X \subseteq \mathbb{N}) \varphi[X, n] \}$

 $?: m \in S \quad \rightsquigarrow \quad (\forall X \subseteq \mathbb{N})\varphi[X,m] \quad \rightsquigarrow \quad \varphi[S,m] \quad \rightsquigarrow \quad m \in S.$

• Well-orderings

Let \prec be a (primitive recursive) linear ordering on \mathbb{N} and X a subset of \mathbb{N} .

$$\begin{array}{l} \operatorname{Prog}[\prec, X] :\Leftrightarrow \ (\forall m \in \mathbb{N})((\forall n \prec m)(n \in X) \to (m \in X)), \\ Acc[\prec] := \ \bigcap \{X \subseteq \mathbb{N} : \operatorname{Prog}[\prec, X]\}, \\ WO[\prec] :\Leftrightarrow \ \mathbb{N} \subseteq Acc[\prec], \\ (WO[\prec] \Leftrightarrow \ \text{every nonempty} \ X \subseteq \mathbb{N} \ \text{has a } \prec \text{-least element}). \end{array}$$

Typical predicative definitions

Pick an arbitrary arithmetic formula A[X, n] of second order arithmetic.

Arithmetic definitions. Consider the process

 $Pow(\mathbb{N}) \ni S \longmapsto \{n \in \mathbb{N} : \mathbb{N} \models A[S, n]\} \in Pow(\mathbb{N}).$

Arithmetical hierarchies. Given a set $S \subseteq \mathbb{N}$ we write

 $m \in (S)_n :\Leftrightarrow \langle n, m \rangle \in S.$

Now suppose that \prec is a primitive recursive linear ordering such that 0 is its least element and

```
n \oplus 1 the successor of n in \prec.
```

We may also assume that the field of \prec is \mathbb{N} .

G. Jäger (Bern)

Now suppose that

$$(S)_0 = \emptyset,$$

$$(S)_{n \oplus 1} = \{ m \in \mathbb{N} : \mathbb{N} \models A[(S)_n, m] \},$$

$$(S)_{\ell} = \text{ disjoint union of } (S)_n \text{ with } n \prec \ell \text{ if } \ell \text{ limit.}$$

Then we write $\mathcal{H}_A[\prec, S]$ and call S an A-hierarchy.

Question

For which linear orderings \prec does this definition make sense?

First answer: well-orderings.

But is this enough if one wants to build up sets from below?

G. Jäger (Bern)

Further locally predicative hierarchies

Ramified analytic hierarchy

$$R_0 := \emptyset, \qquad R_{\alpha+1} := Def^{(2)}(R_{\alpha}), \qquad R_{\lambda} := \bigcup_{\xi < \lambda} R_{\xi} \ (\lambda \text{ limit}).$$

Gödel's constructible hierarchy

$$L_0 := \emptyset, \qquad L_{\alpha+1} := Def(L_{\alpha}), \qquad L_{\lambda} := \bigcup_{\xi < \lambda} L_{\xi} \ (\lambda \text{ limit}).$$

Every step $R_{\alpha} \mapsto R_{\alpha+1}$ and $L_{\alpha} \mapsto L_{\alpha+1}$ is justified from a predicative perspective.

Central question in connection with all these hierarchies:

How far are we allowed to iterate?

G. Jäger (Bern)

Predicative Hierarchies

A first (model-theoretic) approach

Kleene, Spector, Kreisel, Wang, et al.

•
$$HYP = \Delta_1^1 = R_{\omega_1^{CK}} = L_{\omega_1^{CK}} \cap Pow(\mathbb{N}).$$

• Conjecture: Predicatively justifiable subsets of $\mathbb{N} = HYP$.

However, this approach of iterating predicative set formation involves in an essential way the impredicative notion of being a well-ordering relation, even if one restrictes oneself to recursive well-orderings.

A step away from the semantic notion of well-ordered relation to predicatively provable well-orderings.

The proof-theoretic shift

Solomon Feferman (1928 – 2016)

Kurt Schütte (1909 – 1998)

Feferman – Schütte and the ordinal Γ_0

A boot-strap method

- (i) We start off from a predicatively accepted ground theory, say ACA_0 .
- (ii) Then we systematically extend our framework: Whenever we have proved that a primitive recursive linear ordering is a well-ordering, we are allowed to iterate arithmetic comprehension along this well-ordering and to carry through bar induction along this well-ordering.

Originally done by Feferman and Schütte in the context of systems of ramified analysis or/and progressions of theories.

More modern terminology: the theory $AUT(\Pi_{\infty}^{0})$

Recall that for any formula B[n] of second order arithmetic,

$$TI[\prec, B] \iff Prog[\prec, B] \rightarrow \forall nB[n].$$

$$\mathsf{AUT}(\Pi^0_\infty) := \mathsf{ACA}_0 + \frac{WO[\prec]}{\exists X \mathcal{H}_A[\prec, X]} + (BR) \frac{WO[\prec]}{\mathcal{T}I[\prec, B]},$$

where \prec is a primitive recursive linear ordering, A[X, n] an arithmetic formula, and B[n] an arbitrary formula.

Theorem

The proof-theoretic ordinal of $AUT(\Pi_{\infty}^{0})$ is the ordinal Γ_{0} , and $L_{\Gamma_{0}} \cap Pow(\mathbb{N})$ is its least standard model.

Reverse Mathematics (Friedman, Simpson, et al.)

Five central subsystems of second order arithmetic - The Big Five

 $\mathsf{RCA}_0 - \mathsf{WKL}_0 - \mathsf{ACA}_0 - \mathsf{ATR}_0 - \mathsf{\Pi}_1^1 - \mathsf{CA}_0$

The principle (ATR) of arithmetic transfinite recursion

 $\forall R(WO[R] \rightarrow \exists X \mathcal{H}_A[\prec, X]),$

where A[X, n] is an arbitrary arithmetic formula which may contain additional parameters.

$$ATR_0 := ACA_0 + (ATR)$$

Predicative reducibility of ATR_0

Theorem (Friedman, McAloon, Simpson, J)

- **1** The proof-theoretic ordinal of ATR_0 is the ordinal Γ_0 .
- ATR₀ does not have a minimum ω-model or β-modell, but HYP is the intersection of all ω-models of ATR₀.
- **③** Γ_{ε_0} is the proof-theoretic ordinal of

 $\mathsf{ATR} \ := \ \mathsf{ATR}_0 + \textit{induction on } \mathbb{N} \textit{ for all } \mathcal{L}_2 \textit{ formulas}$

First consequences:

- (1) AUT(Π^0_{∞}) and ATR₀ are proof-theoretically equivalent but conceptually very different.
- (2) And is there a big conceptual difference between ATR_0 and ATR?

G. Jäger (Bern)

Equivalences

Fixed points of positive arithmetic clauses (AFP)

$$\exists X \forall n (n \in X \leftrightarrow A[X^+, n]),$$

where $A[X^+, n]$ is an arbitrary X-positive arithmetic formula which may contain additional parameters.

Comparability of well-orderings (CWO)

```
\forall X, Y (WO[X] \land WO[Y] \rightarrow (|X| \leq |Y| \lor |Y| \leq |X|))
```

 Π_1^1 reduction (Π_1^1 -Red)

 $\forall n(A[n] \rightarrow B[n]) \rightarrow \exists X(\{n : A[n]\} \subseteq X \subseteq \{n : B[n]\}),$

where A[n] and B[n] are arbitrary Σ_1^1 and Π_1^1 formulas, respectively.

Theorem (Avigad, Friedman, Simpson) (ATR), (AFP), (CWO), and (Π_1^1 -Red) are pairwise equivalent over ACA₀.

$(\Delta_1^1$ -TR)

$\forall X \forall n (A[X, n] \leftrightarrow B[X, n]) \land WO[R] \rightarrow \exists X \mathcal{H}_A[R, X]$

where A[X, n] and B[X, n] are arbitrary Σ_1^1 and Π_1^1 formulas, respectively.

Theorem (Bärtschi, J)

 $(\Delta_1^1$ -TR) and $(M\Delta_1^1$ -FP) are both equivalent to (ATR) over ACA₀.

From second order arithmetic to set theory

A major difference in building up the universe

 <u>Second order arithmetic</u>: Start off from a fixed/completed ground structure,

 $\mathcal{N} = (\mathbb{N}, \text{ prim.rec. functions and relations}).$

Subsets of \mathbb{N} are then introduced in a controlled way (predicaively, constructively, ...).

• Set theory: Start off from some basic sets and (sometimes) urelements and build new sets accoring to specific rules. In general there is no a priori bound (super collection) to which all sets belong.

Predicativity in set theory

The Platonic approach

We assume that we have a clear understanding of what an ordinal is and that the constructible universe exists,

$$L = \bigcup_{\alpha \in On} L_{\alpha}.$$

Then – in the Feferman-Schütte style – those ordinals can be identified that are "predicatively accessible (justified)". It can be shown (with some effort) that

Predicative part of $L = L_{\Gamma_0}$.

"Building the universe from below" or "predicatively acceptable closure conditions"

For example:

- Closure under pair, union, product, difference,
- Fixed points of positive arithmetic operators with set parameters,

$$\Phi_{\mathfrak{A}}: {\it Pow}(\omega)
i X \longmapsto \{ {\it n} \in \omega : \mathfrak{A}[{\it S}, {\it X}^+, {\it n}] \} \in {\it Pow}(\omega).$$

Then:

- $\Phi_{\mathfrak{A}}$ has a clear predicative meaning.
- Define a fixed point of $\Phi_{\mathfrak{A}}$ via a pseudo-hierarchy argument.
- Stays a fixed point independent of possible new sets.

Basic set theory BS⁰

Formulated in the usual language \mathcal{L}_{\in} of set theory with ω as constant for the first infinite ordinal and relation and function constants for all primitive recursive relations on \mathbb{N}/ω .

Set-theoretic axioms of BS⁰

- (1) Equality and extensionality,
- (2) closure under the rudimentary operations,
- (3) Δ_0 -Separation: For any Δ_0 formula A[x],

$$\exists y \forall x (x \in y \leftrightarrow x \in a \land A[x]),$$

(4) ω -induction: $(\forall x \subseteq \omega)(x \neq \emptyset \rightarrow (\exists m \in x)(\forall n \in x)(m \le n)),$

(5) The defining axioms for all primitive recursive relations.

 BS^0 is clearly justified on predicative grounds. However, situation becomes more complicated if we turn to extensions of BS^0 .

Simpson's ATR^{set}

$$BS^0 + (Reg) + (Count) + (Beta),$$

where

• (Reg) :
$$\Leftrightarrow \forall a (a \neq \emptyset \rightarrow (\exists x \in a) (\forall y \in a) (y \notin x)).$$

• (Count) : $\Leftrightarrow \forall a(a \text{ is hereditarily countable}).$

- $Wf[a,r] \Leftrightarrow (\forall b \subseteq a)(b \neq \emptyset \rightarrow (\exists x \in b)(\forall y \in b)(\langle y, x \rangle \notin r)),$ • $Cp[a,r,f] :\Leftrightarrow \begin{cases} Dom[f] = a \land \\ (\forall x \in a)(f(x) = \{f(y) : y \in a \land \langle y, x \rangle \in r\}) \end{cases}$
- (Beta) : \Leftrightarrow $Wf[a, r] \rightarrow \exists f Cp[a, r, f].$

Theorem (Simpson)

Every axiom of ATR_0 is a theorem of ATR_0^{set} modulo the natural translation of \mathcal{L}_2 into \mathcal{L}_{\in} .

Theorem (Simpson)

If A is an axiom of ATR_0^{set} , then |A| is a theorem of ATR_0 .

 $|A| ::: \begin{cases} \text{translation of the } \mathcal{L}_{\in} \text{ formula } A \text{ into the language } \mathcal{L}_2; \\ \text{sets are represented as well-founded trees;} \\ S \in^* T :\Leftrightarrow \exists n(\langle n \rangle \in T \land S \simeq T^{\langle n \rangle}) \end{cases}$

Some aspects of this translation:

- Closure of \in^* under \simeq is required because of extensionality.
- $\bullet \in {}^*$ has a Σ^1_1 definition; with some extra effort it can be made Δ^1_1 in $\mathsf{ATR}_0.$
- The translation of (Beta) is (more or less) for free under this interpretation of \mathcal{L}_{\in} into \mathcal{L}_{2} .

Question

Is there a natural translation of \mathcal{L}_{\in} into \mathcal{L}_{2} that avoids the use of well-founded trees or graphs with specific decorations?

For example, is there a natural interpretation of \mathcal{L}_{\in} into \mathcal{L}_{2} – respecting extensionality – that can be developed within $\Sigma_{1}^{1}\text{-}AC?$

Hierarchies, fixed points, and reductions

The obvious analogues of (ATR), (AFP), and (Π_1^1 -Red)?

The principle (Δ_0 -TR) of Δ_0 transfinite recursion

 $(\forall r \subseteq \omega)(WO[r] \rightarrow (\exists x \subset \omega)\mathcal{H}_{A}[r,x])$

where A[X, n] is an arbitrary Δ_0 which may contain additional parameters.

Fixed points of positive Δ_0 clauses (Δ_0 -FP)

$$(\exists x \subseteq \omega)(\forall n \in \omega)(n \in x \leftrightarrow A[x^+, n]),$$

where $A[x^+, n]$ is an arbitrary x-positive arithmetic formula which may contain additional parameters.

G. Jäger (Bern)

Π reduction (Π -Red)

 $(\forall x \in a)(A[x] \rightarrow B[x]) \rightarrow \exists y(\{x \in a : A[x]\} \subseteq y \subseteq \{x \in a : B[x]\}),$

where A[x] and B[x] are arbitrary Σ and Π formulas, respectively.

Theorem (Bärtschi, J)

$$\textbf{3} \text{ ATR}_0 \subseteq \text{ BS}^0 + (\Delta_0 \text{-TR}) \subseteq \begin{cases} \text{ BS}^0 + (\Delta_0 \text{-FP}), \\ \text{ BS}^0 + (\Pi \text{-Red}). \end{cases}$$

Theorem

- **2** The proof-theoretic ordinal of $BS^0 + (\Delta_0 FP)$ is Γ_0 .

The first reduction is via a modified Simpson translation of \mathcal{L}_{\in} into \mathcal{L}_{2} , the second via an embedding into KPi⁰.

Question

What is the exact relationship – over BS⁰ – between

 $(\Delta_0\text{-}\mathsf{TR}), (\Delta_0\text{-}\mathsf{FP}), (\Pi\text{-}\mathsf{Red})?$

Kripke-Platek set theory KP

 $\begin{array}{rcl} \mathsf{KP} &:= \ \mathsf{BS}^0 \ \mathsf{plus} \ \mathsf{the} \ \mathsf{following} \ \mathsf{two} \ \mathsf{axiom} \ \mathsf{schemes} \\ (1) \ (\Delta_0\text{-}\mathit{Collection}): \ \ \mathsf{For} \ \mathsf{all} \ \Delta_0 \ \mathsf{formulas} \ A[x,y], \\ & (\forall x \in a) \exists y A[x,y] \ \rightarrow \ \exists z (\forall x \in a) (\exists y \in z) A[x,y]. \\ (2) \ (\mathcal{L}_{\in}\text{-}\mathsf{I}_{\in}): \ \ \mathsf{For} \ \mathsf{all} \ \mathcal{L}_{\in} \ \mathsf{formulas} B[x], \\ & \forall x ((\forall y \in x) B[y] \rightarrow B[x]) \ \rightarrow \ \forall x B[x]. \end{array}$

Relationship between ATR^{set} and KP

Theorem (J)

- The proof-theoretic ordinal of KP is the Bachmann-Howerd ordinal;
 KP is proof-theoretically equivalent to the theory ID₁.
- **2** KP + (Beta) is proof-theoretically equivalent to Δ_2^1 -CA + (BI).

Further:

- KP \forall (AFP)⁻ (Gregoriades for parameter-free).
- KP + (AFP) and KP have the same proof-theoretic strength (Sato).

•
$$\mathsf{KP} + (\mathsf{Beta}) \vdash (\Delta_0 - \mathsf{FP}).$$

- KP + (Beta) + (Π -Red) proves Π_2^1 comprehension on ω .
- KP + (V=L) + (Π -Red) proves Π_2^1 comprehension on ω .

Question

But what can we say about $KP + (\Pi-Red)$?

Kripke-Platek without foundation and extensions

 $KP^0 := BS^0 + (\Delta_0$ -Collection)

 $\mathcal{L}_\in \ := \ \mathcal{L}_\in(\mathsf{Ad})$ with Ad a unary relation symbol to express admissibility.

Ad axioms (Ad.1) $\operatorname{Ad}(d) \rightarrow d$ transitive $\wedge \omega \in d$. (Ad.2) $\operatorname{Ad}(d) \rightarrow A^d$ for every closed instance of an axiom of KP⁰. (Ad.3) $\operatorname{Ad}(d_1) \wedge \operatorname{Ad}(d_2) \rightarrow d_1 \in d_2 \lor d_1 = d_2 \lor d_2 \in d_1$.

$$\begin{split} \mathsf{K}\mathsf{P}\mathsf{i}^0 &:= \; \mathsf{K}\mathsf{P}^0 + \forall x \exists y (x \in y \land \mathsf{Ad}(y)), \\ \mathsf{K}\mathsf{P}\mathsf{i} &:= \; \mathsf{K}\mathsf{P} + \forall x \exists y (x \in y \land \mathsf{Ad}(y)). \end{split}$$

Remark

- The least α such that $L_{\alpha} \models \mathsf{KPi}$ is the first rec. inacc. ordinal.
- KPi⁰ poves (Beta). However, (Beta) is very weak in the context of KPi⁰ since there is no induction on the ordinals.
- On the other hand, it is strong in KP since then it makes the Π₁ predicate "r is well-founded on a" a Δ₁ predicate.

Theorem (J)

- ATR₀ \subseteq KPi⁰ and the proof-theoretic ordinal of KPi⁰ is Γ_0 .
- **2** KPi is proof-theoretically equivalent to KP + (Beta), and thus also to Δ_2^1 -CA + (BI).

Outlook

- The relationship between subsystems of second order arithmetic and set theory is rather transparent as soon as Axiom (Beta) is available.
- However, what can we say if we do not have Axiom (Beta)? Is there a general picture?
- Is Axiom (Beta) a philosophically relevant principle?
- The fat versus high question.

Thank you for your attention!