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The early days of predicativity

Predicativty — impredicativity

Russell and Poincaré (around 1901 — 1906)

@ The vicious circle principle (VCP): A definition of an object S is
impredicative if it refers to a totality to which S belongs.

@ VPC is the essential source of inconsistencies.

@ The structure of the natural numbers and the principle of induction
on the natural numbers (for arbitrary properties) do not require
foundational justification; further sets have to be introduced by
purely predicative means.
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Typical impredicative definitions
oS = {neN:(VXCN)p[X,n]}
7: meS ~ (VXCN)pX,m] ~ ¢[S,m ~ meS.

o Well-orderings

Let < be a (primitive recursive) linear ordering on N and X a subset
of N.

Prog[<,X] = (Vm e N)((VYn < m)(n € X) — (m € X)),
Acc[<] = ﬂ{X C N: Prog[=<, X]},
WOI[<] & N C Acc[<],
(WO[<] < every nonempty X C N has a <-least element).
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The early days of predicativity

Typical predicative definitions

Pick an arbitrary arithmetic formula A[X, n] of second order arithmetic.

Arithmetic definitions. Consider the process

Pow(N)> S +— {ne N:N = A[S,n|} € Pow(N).

Arithmetical hierarchies. Given a set S C N we write
me (S), & (n,m) €S.

Now suppose that < is a primitive recursive linear ordering such that 0 is
its least element and

n @ 1 the successor of n in <.

We may also assume that the field of < is N.
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The early days of predicativity

Now suppose that
(5)0 = J,

(S)nGBl

(S); = disjoint union of (S), with n < £ if £ limit.

{m e N:NE A[(S)n, m|},

Then we write Ha[<, S] and call S an A-hierarchy.

Question
For which linear orderings < does this definition make sense?

First answer: well-orderings.

But is this enough if one wants to build up sets from below?
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The early days of predicativity

Further locally predicative hierarchies

Ramified analytic hierarchy

Ro := 0,  Ray1 := DefP(R,), Ry := [JRe (\limit).

E<A
Godel's constructible hierarchy

Lo =0, Laj1 = Def(La), Ly = |JLe (limit).
E<A

Every step R, — Ra+1 and L, +— L,41 is justified from a predicative
perspective.

Central question in connection with all these hierarchies:
How far are we allowed to iterate? J
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The early days of predicativity

A first (model-theoretic) approach

Kleene, Spector, Kreisel, Wang, et al.
o HYP = Al = R, = Lo N Pow(N).

@ Conjecture: Predicatively justifiable subsets of N = HYP.

However, this approach of iterating predicative set formation involves in
an essential way the impredicative notion of being a well-ordering relation,
even if one restrictes oneself to recursive well-orderings.

A step away from the semantic notion of well-ordered relation to predica-
tively provable well-orderings.
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The proof-theoretic shift

Solomon Feferman (1928 — 2016)

Kurt Schiitte (1909 — 1998)
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The early days of predicativity

Feferman — Schutte and the ordinal I

A boot-strap method
(i) We start off from a predicatively accepted ground theory, say ACAy.

(i) Then we systematically extend our framework: Whenever we have
proved that a primitive recursive linear ordering is a well-ordering, we
are allowed to iterate arithmetic comprehension along this
well-ordering and to carry through bar induction along this
well-ordering.

Originally done by Feferman and Schiitte in the context of systems of
ramified analysis or/and progressions of theories.
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The early days of predicativity

More modern terminology: the theory AUT(M2.)

Recall that for any formula B[n] of second order arithmetic,

TI[<,B] :& Prog[<,B] — VnB]n].

AUT(NY) := ACAq + m (BR) m,

where < is a primitive recursive linear ordering, A[X, n] an arithmetic for-
mula, and B[n] an arbitrary formula.

Theorem

The proof-theoretic ordinal of AUT(NY,) is the ordinal Ty, and
Lr, N Pow(N) is its least standard model.
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Predicative reducibility

Reverse Mathematics (Friedman, Simpson, et al.)

Five central subsystems of second order arithmetic — The Big Five

RCAy — WKLy — ACAg — ATRy — Mi-CA

The principle (ATR) of arithmetic transfinite recursion

VR(WOI[R] — 3IXHal=,X]),

where A[X, n] is an arbitrary arithmetic formula which may contain
additional parameters.

ATRo := ACAq + (ATR)
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Predicative reducibility of ATRy

Theorem (Friedman, McAloon, Simpson, J)
© The proof-theoretic ordinal of ATRg is the ordinal I'y.

@ ATRg does not have a minimum w-model or 3-modell, but HYP is
the intersection of all w-models of ATRy.

© [, is the proof-theoretic ordinal of

ATR := ATRg -+ induction on N for all L, formulas

First consequences:

(1) AUT(N%) and ATRy are proof-theoretically equivalent but
conceptually very different.

(2) And is there a big conceptual difference between ATRy and ATR?
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Predicative reducibility

Equivalences

Fixed points of positive arithmetic clauses (AFP)

3IXVn(ne X « AX*,n]),

where A[X™T, n] is an arbitrary X-positive arithmetic formula which may
contain additional parameters.

Comparability of well-orderings (CWO)
VX, Y (WOIX] A WO[Y] — (IX] <[Y]|V |Y]<[X]))

M} reduction (M}-Red)
Vn(A[n] — B[n]) — 3IX{n:Aln]} C X C{n: B[n]}),

where A[n] and B[n] are arbitrary ¥1 and M} formulas, respectively.
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Predicative reducibility

Theorem (Avigad, Friedman, Simpson)
(ATR), (AFP), (CWO), and (MNi-Red) are pairwise equivalent over ACAg. }

(AI-TR)
VXYn(A[X, n] < B[X,n]) A WO[R] — 3X Ha[R,X]

where A[X, n] and B[X, n] are arbitrary ¥1 and M} formulas, respectively.

Theorem (Bartschi, J)
(Al-TR) and (MA}-FP) are both equivalent to (ATR) over ACA,. J
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Subsystems of set theory

From second order arithmetic to set theory

A major difference in building up the universe

@ Second order arithmetic: Start off from a fixed /completed ground
structure,

N = (N, prim.rec. functions and relations).

Subsets of N are then introduced in a controlled way (predicaively,
constructively, .. .).

@ Set theory: Start off from some basic sets and (sometimes)
urelements and build new sets accoring to specific rules. In general
there is no a priori bound (super collection) to which all sets belong.

v
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Subsystems of set theory

Predicativity in set theory

The Platonic approach

We assume that we have a clear understanding of what an ordinal is and
that the constructible universe exists,

L = U L,.
a€On

Then — in the Feferman-Schiitte style — those ordinals can be identified

that are "predicatively accessible (justified)”. It can be shown (with some
effort) that

Predicative part of L = Lr,.
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Subsystems of set theory

“Building the universe from below" or
“predicatively acceptable closure conditions”

For example:
@ Closure under pair, union, product, difference, . ...

o Fixed points of positive arithmetic operators with set parameters,
g : Pow(w) 3 X — {n € w: A[S, X", n]} € Pow(w).
Then:

— ®y has a clear predicative meaning.

— Define a fixed point of @y via a pseudo-hierarchy argument.

— Stays a fixed point independent of possible new sets.
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Basic set theory BS®

Formulated in the usual language Lc of set theory with w as constant for
the first infinite ordinal and relation and function constants for all primi-
tive recursive relations on N/w.

Set-theoretic axioms of BS®
(1) Equality and extensionality,
(2) closure under the rudimentary operations,
(3) Aop-Separation: For any Ag formula A[x],
dyVx(x €y <> x€a A Alx]),

(4) w-induction: (Vx Cw)(x #@ — (Im € x)(Vn € x)(m < n)),

(5) The defining axioms for all primitive recursive relations.
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Subsystems of set theory

BS is clearly justified on predicative grounds. However, situation be-
comes more complicated if we turn to extensions of BSC.

Simpson's ATR™
BS® + (Reg) + (Count) + (Beta),
where
o (Reg) & Va(a# @ — (Ix € a)(Vy € a)(y ¢ x)).
o (Count) :& Va(a is hereditarily countable).
o Wila,r] & (Wb Ca)(b#2 — (3x € b)(Wy € b)({y,x) & r)),

Dom([f] = a A
(vx € a)(f(x) ={f(y) :y € an(y,x) €r})

o (Beta) :< Wfla,r] — 3fCpla,r,f].

o Cpla,r,f] & {

V.
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Subsystems of set theory

Theorem (Simpson)

Every axiom of ATRq is a theorem of ATR§®® modulo the natural
translation of Ly into Lc.

Theorem (Simpson)

If A is an axiom of ATRE®, then |A| is a theorem of ATRy.

translation of the L£¢ formula A into the language £o;
|A| 2 ¢ sets are represented as well-founded trees;

Se*T = In((n)e T AS~TM)
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Subsystems of set theory

Some aspects of this translation:
@ Closure of €* under ~ is required because of extensionality.

@ c* has a X1 definition; with some extra effort it can be made Al in
ATRo.

@ The translation of (Beta) is (more or less) for free under this
interpretation of L¢ into L5.

Question

Is there a natural translation of L¢ into £ that avoids the use of
well-founded trees or graphs with specific decorations?

For example, is there a natural interpretation of L into £ — respecting
extensionality — that can be developed within £1-AC?
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Subsystems of set theory

Hierarchies, fixed points, and reductions

The obvious analogues of (ATR), (AFP), and (Mi-Red)?

The principle (Ao-TR) of Ay transfinite recursion
(Vr Cw)(WO[r] — (3x C w)Halr,x])

where A[X, n] is an arbitrary A which may contain additional
parameters.

Fixed points of positive Ag clauses (Aq-FP)

(Ix Cw)(Vnew)(nex « Axt,n]),

where A[x™, n] is an arbitrary x-positive arithmetic formula which may
contain additional parameters.

v

G. Jager (Bern) Predicative Hierarchies April 2019 23 /32




Subsystems of set theory

M reduction (N-Red)

(Vx € a)(A[x] = B[x]) — Fy({xe€a: Alx]} Cy C{xe€a: B[x]}),

where A[x| and B[x] are arbitrary ¥ and 1 formulas, respectively.

Theorem (Bartschi, J)
Q BSY 4 (Ao-FP)  (Ao-TR).
@ BS? + (M-Red) F (Ap-TR).

BS? + (Ao-FP),

© ATRy C BS® + (Ap-TR) C
° (B0-TR) { BS + (M-Red).
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Subsystems of set theory

Theorem
© BS? 4 (M-Red) < ATRq.
@ The proof-theoretic ordinal of BS® + (Ag-FP) is Ig.

The first reduction is via a modified Simpson translation of L¢ into Lo,
the second via an embedding into KPiC.

Question

What is the exact relationship — over BS? — between

(Ap-TR), (Lo-FP), (M-Red)?
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Kripke-Platek set theory KP

KP := BS° plus the following two axiom schemes
(1) (Ao-Collection): For all Ag formulas A[x, y],
(Vx € a)IyAl[x,y] — Fz(Vx € a)(Jy € 2)Alx, y].

(2) (Le-le): For all L¢ formulasB[x],

Vx((Vy € x)B[y] — B[x]) — VxB|x].
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Subsystems of set theory

Relationship between ATRS* and KP

Theorem (J)

© The proof-theoretic ordinal of KP is the Bachmann-Howerd ordinal;
KP is proof-theoretically equivalent to the theory |ID;.

© KP + (Beta) is proof-theoretically equivalent to AL-CA + (BI).

Immediate consequence

KP ¢ ATRS and ATRS ¢ KP.
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Subsystems of set theory

Further:
o KP ¥ (AFP)~ (Gregoriades for parameter-free).
e KP + (AFP) and KP have the same proof-theoretic strength (Sato).
o KP + (Beta) - (Ao-FP).
o KP + (Beta) + (M-Red) proves M} comprehension on w.
(

o KP + (V=L) + (MN-Red) proves M} comprehension on w.

Question
But what can we say about KP + (-Red)? J
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Kripke-Platek without foundation and extensions
KP? := BS® + (Ag-Collection)
Le = L(Ad) with Ad a unary relation symbol to express admissibility.

Ad axioms

(Ad.1) Ad(d) — d transitive A w € d.

(Ad.2) Ad(d) — A9 for every closed instance of an axiom of KPP,
(Ad.3) Ad(di) A Ad(dz) — di€da V di =dr V b € dy.

KPi® := KP? +V¥x3Jy(x € y A Ad(y)),
KPi := KP +Vx3dy(x € y A Ad(y)).
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Subsystems of set theory

Remark
@ The least « such that L, = KPi is the first rec. inacc. ordinal.

@ KPi® poves (Beta). However, (Beta) is very weak in the context of
KPi® since there is no induction on the ordinals.

© On the other hand, it is strong in KP since then it makes the My
predicate “r is well-founded on a" a A; predicate.

Theorem (J)

@ ATRy C KPi® and the proof-theoretic ordinal of KPi® is I'y.

@ KPi is proof-theoretically equivalent to KP + (Beta), and thus also to
AL-CA + (BI).

v
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Subsystems of set theory

Outlook

@ The relationship between subsystems of second order arithmetic and
set theory is rather transparent as soon as Axiom (Beta) is available.

@ However, what can we say if we do not have Axiom (Beta)? Is there
a general picture?

@ Is Axiom (Beta) a philosophically relevant principle?

@ The fat versus high question.
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Subsystems of set theory

Thank you for your attention!
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