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General context

We are working in second order arithmetic, i.e., our language L5 is

two-sorted featuring number and set variables. In general our base theory
will be

ACAo

featuring the induction axiom

0eXAVn(neX »n+1eX))—Vn(neX)

and arithmetic comprehension, i.e.,

IXVn(n € X < A(n))

for any arithmetic formula A.

ACA = ACA( + full second order induction scheme
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Linear orderings
We fix some pairing map, e.g.,

(m,n):=3(m+n)(m+n+1)+m
A set R C N x N is reflexive if

(m,n) € R implies (m, m), (n,n) € R
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We fix some pairing map, e.g.,

(m,n):=3(m+n)(m+n+1)+m
A set R C N x N is reflexive if

(m,n) € R implies (m, m), (n,n) € R
For reflexive R we define:

field(R) := {m: (m,m) € R}
m<gmn:=(m,n) €R
m<gpn:=(m,n) € RA(n,m)¢R
LO(R) := R is a linear order
WO(R) := R has no infinite descending chain
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Linear orderings
We fix some pairing map, e.g.,
(m,n):=3(m+n)(m+n+1)+m
A set R C N x N is reflexive if
(m,n) € R implies (m, m), (n,n) € R
For reflexive R we define:
field(R) := {m: (m,m) € R}
m<gmn:=(m,n) €R
m<gpn:=(m,n) € RA(n,m)¢R
LO(R) := R is a linear order
WO(R) := R has no infinite descending chain

We fix a primitive recursive well-ordering <1 up to I'g. For n € field(<) set:
< n:={m: m<an}
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Hierarchies

For any LO(R), set X C N x field(R) and j € field(R) we define
X ={n:(n,j) e X}
XB = {(n,i): i <pjA(n,i) e X}

Intuitively X% = P X;. Define

1<RJ
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Hierarchies

For any LO(R), set X C N x field(R) and j € field(R) we define

X ={n:(n,j) e X}
XB = {(n,i): i <pjA(n,i) e X}

Intuitively X% = @,_ . X;. Define

i<RJ
Ha(R,X):=LOR)AX = {(n,7): j € field(R) A A(n, j, XT7)}
for a formula A(n, j, X). So for j € field(R) we have

X; = {n: A(n,j, X1}
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Axiom schemas

For a formula B(Z, X), free variables different from the ones indicated,
i.e., ¥, X, are called parameters. We consider

A= { A(Z, X): A arithmetic, with set and number parameters}

A" = {A*(:E,X:): A~ arithmetic, with number parameters only}
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Axiom schemas
For a formula B(Z, X), free variables different from the ones indicated,
i.e., ¥, X, are called parameters. We consider

A= { A(Z, X): A arithmetic, with set and number parameters}
A" = {A*(:Y:’,X’): A~ arithmetic, with number parameters only}

(Variants of) arithmetic transfinite recursion:
VA(n,j,X) e WO(R) — 3X Ha(R,X)) (ATR)

(WO(R)
VA~ (n,j, X) €A : (WO(R) — 3X H, (R, X)) (ATR™)
VA (n,j,X) €A™ : Ym(WO(< | m) - 3IX Hy-(< [ m, X)) (prATR™)

VR
VR
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Axiom schemas
For a formula B(Z, X), free variables different from the ones indicated,
i.e., T, X, are called parameters. We consider

A= { A(Z, X): A arithmetic, with set and number parameters}
_»7)2—’

): A™ arithmetic, with number parameters only}

A = {A’(a:

(Variants of) arithmetic transfinite recursion:

VA(n,j,X) e : VR(WO(R) — 3X Hu(R,X)) (ATR)
VA  (n,7,X)ed”: VR(WO(R) —3IXH, (R,X)) (ATR™)
VA" (n,7,X) €A™ : Vm(WO(< [ m) - IX Hy- (< [ m, X)) (prATR™)
(Variants of) Arithmetic fixed points:

VA(n,YT) €2 : I¥YVn(neY < An,YT)) (FP)

VA (n,YT) e : I¥YVn(neY « A~ (n,Y")) (FP7)

where Y occurs only positively in A, A™.
ABM May 2019 5/16



Formal systems

ATR() =ACAq) + (ATR)
ATR, =ACAq) + (ATR")
prATR ) := ACAq) + (prATR")
FPo) =ACAq + (FP)

Py, =ACAq + (FP7)
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Formal systems

ATR, =ACAq) + (ATR")

prATR ) := ACA(q) + (PrATR)

Py, =ACAq + (FP7)

Goal: Characterise the set-parameter free systems up to proof-theoretic
strength.
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First observations

Lemma 1
ATR, proves all instances of (ATR)

Proof sketch: Let R be a well-ordering and Y a set. We define a
well-ordering S such that

field(S) = {0} x Y)U{(1,1)} U ({2} x R)
= disjoint sum of Y, {1} & R
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First observations

Lemma 1
ATR, proves all instances of (ATR) J

Proof sketch: Let R be a well-ordering and Y a set. We define a
well-ordering S such that

field(S) = {0} x Y)U{(1,1)} U ({2} x R)
= disjoint sum of Y, {1} & R

where the ordering S looks like
(Y, <n) <s (1,1) <g (R, <Rr)

S is a well-ordering, also Y and R can be obtained from S by arithmetic
comprehension. (1, 1) serves as a separator.
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Next consider A(n,j, X,Y’) arithmetic, with only X, Y as set variables.

The goal is to specify a transformation
A(n,j, X,Y) ¥ B(n,j 2)
apply (ATR™) to B, yielding a hierarchy W along S iterating B, i.e.,
Wiy = {n: B, (k,5), WSED) L for (k. j) € field(S)

such that
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Next consider A(n,j, X,Y’) arithmetic, with only X, Y as set variables.

The goal is to specify a transformation

into

A(n,j,X,Y) ~ B(n,j,Z)
apply (ATR™) to B, yielding a hierarchy W along S iterating B, i.e.,
Wik j) = {n: B(n, (k,j),WS(’“-J’)} for (k, ) € field(S)

such that
o if k=0, W copies Y, one element per level
o if k=1, W uses (1,1) as separator
o if k=2, W iterates A along R. X and Y are encoded in Z.

Taking the levels of W above (1,1) gives the desired hierarchy for A.
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Next consider A(n,j, X,Y’) arithmetic, with only X, Y as set variables.

The goal is to specify a transformation

into

A(n,j,X,Y) ~ B(n,j,Z)
apply (ATR™) to B, yielding a hierarchy W along S iterating B, i.e.,
Wik j) = {n: B(n, (k,j),WS(’“-J’)} for (k, ) € field(S)

such that
o if k=0, W copies Y, one element per level
o if k=1, W uses (1,1) as separator
o if k=2, W iterates A along R. X and Y are encoded in Z.

Taking the levels of W above (1,1) gives the desired hierarchy for A. O
Corollary 1
ATR, ~ ATRy ATR™ =~ ATR
ABM May 2010 8/ 16



Avigad (1996) showed the equivalence of
(ATR) and (FP) over ACAy

The next two lemmas follow in essentially the same manner.
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Avigad (1996) showed the equivalence of
(ATR) and (FP) over ACAy

The next two lemmas follow in essentially the same manner.

Lemma 2 (following Avigad (1996))
FP + (prATR™) J

Proof sketch: Working in FP; assume WO(< [ m) and let
A7 (n,j7,X) arithmetical, no set parameters, in nnf

Idea: Derive the char. function of the desired hierarchy by transforming

A (n,5, X) " At(n,j, 2%, <,b)
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Avigad (1996) showed the equivalence of
(ATR) and (FP) over ACAy

The next two lemmas follow in essentially the same manner.

Lemma 2 (following Avigad (1996))
FP; I (prATR") }

Proof sketch: Working in FP; assume WO(< [ m) and let
A7 (n,j7,X) arithmetical, no set parameters, in nnf
Idea: Derive the char. function of the desired hierarchy by transforming
A (n,5,X) " AT(n,j, 27, <,b)

by replacing in A~

o te X with ((t,1)e ZA (to<b))

o t ¢ X with ((t,0) € ZV —(to b))
Analogously we transform —(A™) ke (—A)T.
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Using AT, (=A)™ we define a Z-positive arithmetical formula
B(((n,b),k),j, 2%, <)

which asserts the following:
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Using AT, (=A)™ we define a Z-positive arithmetical formula
B (((nab)7k) 7j7Z+7<])

which asserts the following:
@ Foranyl <p b and n:

((n,),0)eZ or ((ndl),1)eZ
o At level b:
((n,b),1), ((n,b),0) € Z according to AT, (=A)*
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Using AT, (=A)™ we define a Z-positive arithmetical formula
B (((nab)7k;> 7j7Z+7 <])

which asserts the following:
@ Foranyl <p b and n:

((n,),0)eZ or ((ndl),1)eZ
o At level b:
((n,b),1), ((n,b),0) € Z according to AT, (=A)*
(FP™) is applicable, yielding a fixed point Y:
((n,b), k)€Y < B(((n,b),k),j, Y, <)

Since WO(<1 | m), Y actually represents a hierarchy X. By construction
X iterates A~ along < [ m. O
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Using AT, (=A)™ we define a Z-positive arithmetical formula
B (((nab)7k> 7j7Z+7 <])

which asserts the following:
@ Foranyl <p b and n:

((n,),0)eZ or ((ndl),1)eZ
o At level b:
((n,b),1), ((n,b),0) € Z according to AT, (=A)*
(FP™) is applicable, yielding a fixed point Y:
((n,b), k)€Y < B(((n,b),k),j, Y, <)

Since WO(<1 | m), Y actually represents a hierarchy X. By construction
X iterates A~ along < | m. O

Corollary 2
prATR, C FP, & prATR™ C FP™ J
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Lemma 3 (following Avigad (1996))
ATR; I (FP7) J

Proof sketch: The proof involves pseudohierarchies (Spector, 1959; Gandy,
1960). By Corollary 1 we can work in ATRg. Let A= (n,Y) be arithmetic
with no set parameters. We stipulate

B(R) = LO(R) A 3z(x = min(R)) A
3X (X hierarchy along R satisfiying @ - @),

where for all j, k € field(R)
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Lemma 3 (following Avigad (1996))
ATR; I (FP7)

|

Proof sketch: The proof involves pseudohierarchies (Spector, 1959; Gandy,
1960). By Corollary 1 we can work in ATRg. Let A= (n,Y) be arithmetic

with no set parameters. We stipulate

B(R) = LO(R) A 3z(x = min(R)) A
3X (X hierarchy along R satisfiying @ - @),

where for all j, k € field(R)
@ Xo=0 A (jis a successor — Xj+1 ={n: A= (n, X;)})
Q jisalimit - X; =, ., Xi
© n € X, — n entered the hierarchy at some level
Q j<rk—X; CXy
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We can show that

ATRo - WO(R) — B(R)
For @, @, © we need R and j. @ relies on the Y-positivity of A™.
B(R) is 31, hence by the IT}-universality of WO(R), i.e.,
Theorem (IT;-universality of WO(R))
For any 31 formula C(X), ACAq proves

IW (WO(W) < C(W)).
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We can show that
ATRy F WO(R) — B(R)

For @, @, @ we need R and j. @ relies on the Y-positivity of A™.
B(R) is 31, hence by the IT}-universality of WO(R), i.e.,

Theorem (IT;-universality of WO(R))
For any 31 formula C(X), ACAq proves

W (WO(W) «» C(W)).

we get
ATRo F 3W (B(W) - WO(W)).

B(W) A ~WO(W)

W is a so-called pseudohierarchy. A fixed point for A~ (n,Y ™) can be
obtained from W by using @ - @ and arithmetic comprehension. U
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We can show that
ATRy F WO(R) — B(R)

For @, @, @ we need R and j. @ relies on the Y-positivity of A™.
B(R) is 31, hence by the IT}-universality of WO(R), i.e.,

Theorem (IT;-universality of WO(R))
For any 31 formula C(X), ACAq proves

W (WO(W) «» C(W)).

we get
ATRo F 3W (B(W) - WO(W)).

B(W) A ~WO(W)

W is a so-called pseudohierarchy. A fixed point for A~ (n,Y ™) can be
obtained from W by using @ - @ and arithmetic comprehension. U

Corollary 3
FPy C ATRy FP~ C ATR™
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Well-ordering proofs

We use the binary Veblen functions ¢, (5), i.e. po(a) = w® and
Yao: Ord = Ord

enumerates the common fixed points of all ¢z with § < . I'g denotes the
first ordinal such that ¢r,(0) = T'.
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Well-ordering proofs

We use the binary Veblen functions ¢, (), i.e. po(a) = w® and
Yao: Ord = Ord

enumerates the common fixed points of all ¢z with § < . I'g denotes the
first ordinal such that ¢r,(0) = I'g. Using < we establish upper

proof-theoretic bounds relative to an anonymous relation variable Q.
Abbreviations:

aCS:="aa)(febl)
Prog(S) :=Va(a TS —a€bl)
TI(S, ) :== Prog(S) = a C S
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Well-ordering proofs

We use the binary Veblen functions ¢, (), i.e. po(a) = w® and

Yao: Ord = Ord

enumerates the common fixed points of all ¢z with § < . I'g denotes the

first ordinal such that ¢r,(0) = I'g. Using < we establish upper

proof-theoretic bounds relative to an anonymous relation variable Q.

Abbreviations:

aCS:=(Vga)(f€S)
Prog(S) :=Va(a €S —a € )
TI(Sa)—P g(S) > acCsS
Sp(S) == AaVE(E S S = {+a )
W(a) = TI(Q, a)
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We set

(e, ) := oy (Pas (- - (Pan (Pe(@) (M) - )
where
o N W W 4w and oy >
h(a)

=1



We set

P(a,n) = @ay (Pas (- - - (Pan (Pe) (M) -+ +)

where

NF
a = w4 w0t and a > Do, >e(a),

h(a)

and define the jump operator

Sp™ (8, @) := AB.(VE ) (@e(a)(B) € Sp(S¢) )-
Finally we consider hierarchies

R(S,a) == (Ya<&@)(0<da— S = Sp*(S,a))

ABM May 2019
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Lemma 4 (Lower proof-theoretic bounds for prATR )

PrATRy = W() for all < pey (0)
S I V@) 7 ol @ <) ooy (U)

Proof sketch: We use the following theorem adapted to our setting
featuring the anonymous relation Q:
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Lemma 4 (Lower proof-theoretic bounds for prATR )

PrATRy = W() for all < pey (0)
S I V@) 7 ol @ <) ooy (U)

Proof sketch: We use the following theorem adapted to our setting
featuring the anonymous relation Q:

Theorem
ACA + {TI(A, o): A(z) arithmetic} proves that

R(Y,a) A B C Yo — TI(Yy, &(a, B))
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Lemma 4 (Lower proof-theoretic bounds for prATR )

PrATRy = W() for all < pey (0)
S I V@) 7 ol @ <) ooy (U)

Proof sketch: We use the following theorem adapted to our setting
featuring the anonymous relation Q:

Theorem
ACA + {TI(A, o): A(z) arithmetic} proves that

R(Y,a) A B C Yo — TI(Yy, &(a, B))

Using (prATR™) there exists a hierarchy Y along <1 [ m such that Yy = @,
R(Y,m). Then we use 0 C @ and that the fact that for arithmetic A(x)

ACA( F TI(A(x), ) for all a <1 e
ACA I TI(A(x), ar) for all o <11 (ep)

d
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Corollary 4
PATR | > 9o (0) & [PrATR| > ) (0) J

By showing that FP is conservative over ]I/I51| it follows that
Lemma 5
FPy| = Da] = e, (0) J

Combining everything so far gives
ATR; =~ ATRy
[PrATRy | = |[FPy | = 2, (0)
ATR™ ~ ATR
prATR™ C FP™
IPrATR™| > ¢y, (24)(0)
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Corollary 4
PATR | > 9o (0) & [PrATR| > ) (0) J

By showing that FP is conservative over |ID1] it follows that

Lemma 5
IFP5| = D1 = ey (0) J

Combining everything so far gives
ATR, ~ ATRy
[PrATRy | = |[FPy | = 2, (0)
ATR™ ~ ATR
prATR™ C FP™
IPrATR™| > ¢y, (24)(0)
If we can show that [FP™| < ¢, () (0) it follows that
[prATR™| = [FP™| = ¢, (<) (0)
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Thank you for your attention!
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