Parameter-Free Versions of ATR₀ and Related Theories

Michael Bärtschi jww Gerhard Jäger Universität Bern

ABM Meeting Spring 2019 Ludwig-Maximilians-Universität München May 2 & 3

Outline

- Axiom schemas and related systems
 - Preliminaries
 - Axiom schemas
 - Formal systems

- 2 Relations between these systems
 - First observations
 - Well-ordering proofs

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

General context

We are working in second order arithmetic, i.e., our language \mathcal{L}_2 is two-sorted featuring number and set variables. In general our base theory will be

$$ACA_0$$

featuring the induction axiom

$$(0 \in X \land \forall n (n \in X \to n+1 \in X)) \to \forall n (n \in X)$$

and arithmetic comprehension, i.e.,

$$\exists X \forall n (n \in X \leftrightarrow A(n))$$

for any arithmetic formula A.

 $ACA = ACA_0 + full$ second order induction scheme

4 □ ▶ ← 결 ▶ ← 결 ▶ ← 결 ▶ → 결 ★

May 2019

2 / 16

Linear orderings

We fix some pairing map, e.g.,

$$(m,n) := \frac{1}{2}(m+n)(m+n+1) + m$$

A set $R \subseteq \mathbb{N} \times \mathbb{N}$ is reflexive if

$$(m,n) \in R \text{ implies } (m,m), (n,n) \in R$$

|□▶ ◀∰▶ ◀불▶ ◀불▶ | 불 | 쒸٩♡

May 2019

3 / 16

Linear orderings

We fix some pairing map, e.g.,

$$(m,n) := \frac{1}{2}(m+n)(m+n+1) + m$$

A set $R \subseteq \mathbb{N} \times \mathbb{N}$ is reflexive if

$$(m,n) \in R$$
 implies $(m,m), (n,n) \in R$

For reflexive R we define:

$$\begin{split} & \mathrm{field}(R) := \{m \colon (m,m) \in R\} \\ & m \leq_R n := (m,n) \in R \\ & m <_R n := (m,n) \in R \land (n,m) \not \in R \\ & \mathrm{LO}(R) := R \text{ is a linear order} \\ & \mathrm{WO}(R) := R \text{ has no infinite descending chain} \end{split}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□</p

Linear orderings

We fix some pairing map, e.g.,

$$(m,n) := \frac{1}{2}(m+n)(m+n+1) + m$$

A set $R \subseteq \mathbb{N} \times \mathbb{N}$ is reflexive if

$$(m,n) \in R$$
 implies $(m,m), (n,n) \in R$

For reflexive R we define:

$$\begin{split} & \mathrm{field}(R) := \{m \colon (m,m) \in R\} \\ & m \leq_R n := (m,n) \in R \\ & m <_R n := (m,n) \in R \land (n,m) \not \in R \\ & \mathrm{LO}(R) := R \text{ is a linear order} \\ & \mathrm{WO}(R) := R \text{ has no infinite descending chain} \end{split}$$

We fix a primitive recursive well-ordering \lhd up to Γ_0 . For $n \in \mathrm{field}(\lhd)$ set:

$$\lhd \upharpoonright n := \{m \colon m \lhd n\}$$

ABM May 2019 3 / 16

Hierarchies

For any LO(R), set $X \subseteq \mathbb{N} \times \mathrm{field}(R)$ and $j \in \mathrm{field}(R)$ we define

$$X_j := \{n \colon (n, j) \in X\}$$

$$X^{Rj} := \{(n, i) \colon i <_R j \land (n, i) \in X\}$$

Intuitively $X^{Rj} = \bigoplus_{i \leq_R j} X_i$. Define

ABM May 2019 4 / 16

Hierarchies

For any LO(R), set $X \subseteq \mathbb{N} \times \text{field}(R)$ and $j \in \text{field}(R)$ we define

$$\begin{split} X_j &:= \{n \colon (n,j) \in X\} \\ X^{Rj} &:= \{(n,i) \colon i <_R j \land (n,i) \in X\} \end{split}$$

Intuitively $X^{Rj} = \bigoplus_{i \leq_R j} X_i$. Define

$$H_A(R,X) := LO(R) \land X = \{(n,j) : j \in field(R) \land A(n,j,X^{Rj})\}$$

for a formula A(n,j,X). So for $j\in\operatorname{field}(R)$ we have

$$X_j = \left\{ n \colon A(n, j, X^{Rj}) \right\}$$

ABM May 2019 4 / 16

Axiom schemas

For a formula $B(\vec{x},\vec{X})$, free variables different from the ones indicated, i.e., \vec{x},\vec{X} , are called parameters. We consider

$$\mathfrak{A} := \left\{ \begin{array}{l} A(\vec{x},\vec{X}) \colon A \text{ arithmetic, with } \mathbf{set} \text{ and } \mathbf{number} \text{ parameters} \right\} \\ \mathfrak{A}^- := \left\{ A^-(\vec{x},\vec{X}) \colon A^- \text{ arithmetic, with } \mathbf{number} \text{ parameters } \mathbf{only} \right\} \end{array}$$

ABM May 2019 5 / 16

Axiom schemas

For a formula $B(\vec{x}, \vec{X})$, free variables different from the ones indicated, i.e., \vec{x}, \vec{X} , are called parameters. We consider

$$\mathfrak{A}:=\left\{\begin{array}{ll}A(\vec{x},\vec{X})\colon A \text{ arithmetic, with } \mathbf{set} \text{ and } \mathbf{number} \text{ parameters}\right\}$$

$$\mathfrak{A}^-:=\left\{A^-(\vec{x},\vec{X})\colon A^- \text{ arithmetic, with } \mathbf{number} \text{ parameters } \mathbf{only}\right\}$$

(Variants of) arithmetic transfinite recursion:

$$\begin{array}{lll} \forall A(n,j,X) \in \mathfrak{A} & : & \forall R(\mathrm{WO}(R) \to \exists X\, H_A(R,X)) & (\mathsf{ATR}) \\ \forall A^-(n,j,X) \in \mathfrak{A}^- : & \forall R(\mathrm{WO}(R) \to \exists X\, H_{A^-}(R,X)) & (\mathsf{ATR}^-) \\ \forall A^-(n,j,X) \in \mathfrak{A}^- : & \forall m(\mathrm{WO}(\lhd \upharpoonright m) \to \exists X\, H_{A^-}(\lhd \upharpoonright m,X)) & (\mathsf{prATR}^-) \end{array}$$

Axiom schemas

For a formula $B(\vec{x},\vec{X})$, free variables different from the ones indicated, i.e., \vec{x},\vec{X} , are called parameters. We consider

$$\mathfrak{A}:=\left\{\begin{array}{ll}A(\vec{x},\vec{X})\colon A \text{ arithmetic, with } \mathbf{set} \text{ and } \mathbf{number} \text{ parameters}\right\}$$

$$\mathfrak{A}^-:=\left\{A^-(\vec{x},\vec{X})\colon A^- \text{ arithmetic, with } \mathbf{number} \text{ parameters } \mathbf{only}\right\}$$

(Variants of) arithmetic transfinite recursion:

$$\begin{array}{lll} \forall A(n,j,X) \in \mathfrak{A} & : & \forall R(\mathrm{WO}(R) & \rightarrow \exists X \, H_A(R,X)) & (\mathsf{ATR}) \\ \forall A^-(n,j,X) \in \mathfrak{A}^- : & \forall R(\mathrm{WO}(R) & \rightarrow \exists X \, H_{A^-}(R,X)) & (\mathsf{ATR}^-) \\ \forall A^-(n,j,X) \in \mathfrak{A}^- : & \forall m(\mathrm{WO}(\lhd \upharpoonright m) \rightarrow \exists X \, H_{A^-}(\lhd \upharpoonright m,X)) & (\mathsf{prATR}^-) \end{array}$$

(Variants of) Arithmetic fixed points:

$$\forall A(n, Y^+) \in \mathfrak{A} : \exists Y \, \forall n \, (n \in Y \leftrightarrow A(n, Y^+))$$
 (FP)
$$\forall A^-(n, Y^+) \in \mathfrak{A}^- : \exists Y \, \forall n \, (n \in Y \leftrightarrow A^-(n, Y^+))$$
 (FP⁻)

where Y occurs only positively in A, A^- .

ABM May 2019 5 / 16

Formal systems

$$\begin{array}{lll} \mathsf{ATR}_{(0)} &:= \mathsf{ACA}_{(0)} + & (\mathsf{ATR}) \\ \mathsf{ATR}_{(0)}^- &:= \mathsf{ACA}_{(0)} + & (\mathsf{ATR}^-) \\ \mathsf{prATR}_{(0)}^- &:= \mathsf{ACA}_{(0)} + (\mathsf{prATR}^-) \\ \mathsf{FP}_{(0)} &:= \mathsf{ACA}_{(0)} + & (\mathsf{FP}) \\ \mathsf{FP}_{(0)}^- &:= \mathsf{ACA}_{(0)} + & (\mathsf{FP}^-) \end{array}$$

Formal systems

$$\begin{array}{lll} \mathsf{ATR}_{(0)} &:= \mathsf{ACA}_{(0)} + & (\mathsf{ATR}) \\ \mathsf{ATR}_{(0)}^- &:= \mathsf{ACA}_{(0)} + & (\mathsf{ATR}^-) \\ \mathsf{prATR}_{(0)}^- &:= \mathsf{ACA}_{(0)} + (\mathsf{prATR}^-) \\ \mathsf{FP}_{(0)} &:= \mathsf{ACA}_{(0)} + & (\mathsf{FP}) \\ \mathsf{FP}_{(0)}^- &:= \mathsf{ACA}_{(0)} + & (\mathsf{FP}^-) \end{array}$$

Goal: Characterise the set-parameter free systems up to proof-theoretic strength.

6 / 16

First observations

Lemma 1

ATR₀ proves all instances of (ATR)

Proof sketch: Let ${\cal R}$ be a well-ordering and ${\cal Y}$ a set. We define a well-ordering ${\cal S}$ such that

$$\begin{split} \operatorname{field}(S) &= (\{0\} \times Y) \cup \{(1,1)\} \cup (\{2\} \times R) \\ &= \operatorname{disjoint sum of } Y, \ \{1\} \ \& \ R \end{split}$$

ABM May 2019 7 / 16

First observations

Lemma 1

ATR₀ proves all instances of (ATR)

Proof sketch: Let R be a well-ordering and Y a set. We define a well-ordering S such that

$$\begin{aligned} \operatorname{field}(S) &= (\{0\} \times Y) \cup \{(1,1)\} \cup (\{2\} \times R) \\ &= \operatorname{disjoint sum of } Y, \ \{1\} \ \& \ R \end{aligned}$$

where the ordering S looks like

$$(Y, <_{\mathbb{N}}) <_S (1, 1) <_S (R, <_R)$$

S is a well-ordering, also Y and R can be obtained from S by arithmetic comprehension. (1,1) serves as a separator.

> May 2019 7 / 16

Next consider A(n,j,X,Y) arithmetic, with only X,Y as set variables. The goal is to specify a transformation

$$A(n, j, X, Y) \stackrel{into}{\leadsto} B(n, j, Z)$$

apply (ATR^-) to B, yielding a hierarchy W along S iterating B, i.e.,

$$W_{(k,j)} = \left\{n \colon B(n,(k,j),W^{S(k,j)})\right\} \quad \text{ for } (k,j) \in \mathrm{field}(S)$$

such that

<ロト < 回 > < 巨 > < 巨 > 三 の < ○

ABM May 2019 8 / 16

Next consider A(n,j,X,Y) arithmetic, with only X,Y as set variables. The goal is to specify a transformation

$$A(n, j, X, Y) \stackrel{into}{\leadsto} B(n, j, Z)$$

apply (ATR^-) to B, yielding a hierarchy W along S iterating B, i.e.,

$$W_{(k,j)} = \left\{n \colon B(n,(k,j),W^{S(k,j)})\right\} \quad \text{ for } (k,j) \in \mathrm{field}(S)$$

such that

- if k = 0, W copies Y, one element per level
- if k = 1, W uses (1,1) as separator
- if k=2, W iterates A along R. X and Y are encoded in Z.

Taking the levels of W above (1,1) gives the desired hierarchy for A.

Next consider A(n,j,X,Y) arithmetic, with only X,Y as set variables. The goal is to specify a transformation

$$A(n, j, X, Y) \stackrel{into}{\leadsto} B(n, j, Z)$$

apply (ATR^-) to B, yielding a hierarchy W along S iterating B, i.e.,

$$W_{(k,j)} = \left\{n \colon B(n,(k,j),W^{S(k,j)})\right\} \quad \text{ for } (k,j) \in \mathrm{field}(S)$$

such that

- if k = 0, W copies Y, one element per level
- if k = 1, W uses (1, 1) as separator
- if k=2, W iterates A along R. X and Y are encoded in Z.

Taking the levels of W above (1,1) gives the desired hierarchy for A.

Corollary 1

$$\mathsf{ATR}_0^- \approx \mathsf{ATR}_0 \; \mathsf{ATR}^- \approx \mathsf{ATR}$$

ABM May 2019 8 / 16

Avigad (1996) showed the equivalence of

(ATR) and (FP) over ACA_0

The next two lemmas follow in essentially the same manner.

ABM May 2019 9 / 16

Avigad (1996) showed the equivalence of

(ATR) and (FP) over
$$ACA_0$$

The next two lemmas follow in essentially the same manner.

Lemma 2 (following Avigad (1996))

$$\mathsf{FP}_0^- \vdash (\mathsf{prATR}^-)$$

Proof sketch: Working in FP_0^- assume $\mathrm{WO}(\lhd \upharpoonright m)$ and let

 $A^-(n,j,X)$ arithmetical, no set parameters, in nnf

Idea: Derive the char. function of the desired hierarchy by transforming

$$A^{-}(n,j,X) \stackrel{into}{\leadsto} A^{+}(n,j,Z^{+},\triangleleft,b)$$

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩안

Avigad (1996) showed the equivalence of

(ATR) and (FP) over
$$ACA_0$$

The next two lemmas follow in essentially the same manner.

Lemma 2 (following Avigad (1996))

$$\mathsf{FP}_0^- \vdash (\mathsf{prATR}^-)$$

Proof sketch: Working in FP_0^- assume $\mathrm{WO}(\lhd \upharpoonright m)$ and let

$$A^-(n,j,X)$$
 arithmetical, no set parameters, in nnf

Idea: Derive the char. function of the desired hierarchy by transforming

$$A^{-}(n,j,X) \stackrel{into}{\leadsto} A^{+}(n,j,Z^{+}, \lhd, b)$$

by replacing in A^-

- $t \in X$ with $((t,1) \in Z \land (t_0 \lhd b))$
- $t \notin X$ with $((t,0) \in Z \vee \neg (t_0 \lhd b))$

Analogously we transform $\neg (A^-) \overset{into}{\leadsto} (\neg A)^+$.

ABM May 2019 9 / 16

$$B\left(\left((n,b),k\right),j,Z^{+},\vartriangleleft\right)$$

which asserts the following:

ABM May 2019 10 / 16

$$B\left(\left((n,b),k\right),j,Z^{+},\vartriangleleft\right)$$

which asserts the following:

• For any $l <_R b$ and n:

$$\left(\,\left(n,l\right),\,0\,\right)\in Z\qquad\text{or}\qquad\left(\,\left(n,l\right),\,1\,\right)\in Z$$

At level b:

$$((n,b),1),((n,b),0)\in Z$$
 according to $A^+,(\neg A)^+$

10 / 16

ABM May 2019

$$B\left(\left(\left(n,b\right),k\right),j,Z^{+},\vartriangleleft\right)$$

which asserts the following:

• For any $l <_R b$ and n:

$$\left(\,\left(n,l\right),\,0\,\right)\in Z\quad\text{ or }\quad\left(\,\left(n,l\right),\,1\,\right)\in Z$$

• At level b:

$$((n,b),1),((n,b),0)\in Z$$
 according to $A^+,(\neg A)^+$

 (FP^-) is applicable, yielding a fixed point Y:

$$((n,b),k) \in Y \leftrightarrow B(((n,b),k),j,Y^+, \triangleleft)$$

Since $WO(\lhd \upharpoonright m)$, Y actually represents a hierarchy X. By construction X iterates A^- along $\lhd \upharpoonright m$.

10 / 16

ABM May 2019

$$B\left(\left((n,b),k\right),j,Z^{+},\vartriangleleft\right)$$

which asserts the following:

• For any $l <_R b$ and n:

$$((n,l),0) \in Z$$
 or $((n,l),1) \in Z$

At level b:

$$((n,b),1),((n,b),0)\in Z$$
 according to $A^+,(\neg A)^+$

 (FP^-) is applicable, yielding a fixed point Y:

$$((n,b), k) \in Y \leftrightarrow B(((n,b), k), j, Y^+, \lhd)$$

Since $WO(\lhd \upharpoonright m)$, Y actually represents a hierarchy X. By construction X iterates A^- along $\lhd \upharpoonright m$. \square

Corollary 2

$$prATR_0^- \subseteq FP_0^- \& prATR^- \subseteq FP^-$$

ABM May 2019 10 / 16

Lemma 3 (following Avigad (1996))

$$\mathsf{ATR}_0^- \vdash (\mathsf{FP}^-)$$

Proof sketch: The proof involves pseudohierarchies (Spector, 1959; Gandy, 1960). By Corollary 1 we can work in ATR₀. Let $A^-(n,Y^+)$ be arithmetic with no set parameters. We stipulate

$$B(R) \equiv \text{LO}(R) \wedge \exists x (x = \min(R)) \wedge \\ \exists X (X \text{ hierarchy along } R \text{ satisfiying } \bullet \text{-} \bullet),$$

where for all $j, k \in field(R)$

11 / 16

ABM May 2019

Lemma 3 (following Avigad (1996))

$$\mathsf{ATR}_0^- \vdash (\mathsf{FP}^-)$$

Proof sketch: The proof involves pseudohierarchies (Spector, 1959; Gandy, 1960). By Corollary 1 we can work in ATR₀. Let $A^-(n,Y^+)$ be arithmetic with no set parameters. We stipulate

$$B(R) \equiv \mathrm{LO}(R) \wedge \exists x (x = \min(R)) \wedge \\ \exists X (X \text{ hierarchy along } R \text{ satisfiying } \bullet \text{-} \bullet),$$

where for all $j, k \in field(R)$

- 2 j is a limit $\to X_j = \bigcup_{i <_R j} X_i$
- \bullet $n \in X_j \to \mathsf{n}$ entered the hierarchy at some level

We can show that

$$\mathsf{ATR}_0 \vdash \mathsf{WO}(R) \to B(R)$$

For \bigcirc , \bigcirc , \bigcirc we need R and j. \bigcirc relies on the Y-positivity of A^- . B(R) is Σ_1^1 , hence by the Π_1^1 -universality of WO(R), i.e.,

Theorem (Π_1^1 -universality of WO(R))

For any Σ^1_1 formula C(X), ACA₀ proves

$$\exists W (WO(W) \leftrightarrow C(W)).$$

12 / 16

ABM May 2019

We can show that

$$\mathsf{ATR}_0 \vdash \mathsf{WO}(R) \to B(R)$$

For \bigcirc , \bigcirc , \bigcirc we need R and j. \bigcirc relies on the Y-positivity of A^- . B(R) is Σ_1^1 , hence by the Π_1^1 -universality of WO(R), i.e.,

Theorem (Π_1^1 -universality of WO(R))

For any Σ^1_1 formula C(X), ACA_0 proves

$$\exists W (WO(W) \leftrightarrow C(W)).$$

we get

$$\mathsf{ATR}_0 \vdash \exists W \ \underbrace{\left(B(W) \nrightarrow \mathsf{WO}(W)\right)}_{B(W) \land \neg \mathsf{WO}(W)}.$$

W is a so-called pseudohierarchy. A fixed point for $A^-(n,Y^+)$ can be obtained from W by using \bigcirc - \bigcirc and arithmetic comprehension.

(日) (日) (日) (日) (日)

12 / 16

ABM May 2019

We can show that

$$\mathsf{ATR}_0 \vdash \mathsf{WO}(R) \to B(R)$$

For \bigcirc , \bigcirc , \bigcirc we need R and j. \bigcirc relies on the Y-positivity of A^- . B(R) is Σ_1^1 , hence by the Π_1^1 -universality of WO(R), i.e.,

Theorem (Π_1^1 -universality of WO(R))

For any Σ^1_1 formula C(X), ACA_0 proves

$$\exists W (WO(W) \leftrightarrow C(W)).$$

we get

$$\mathsf{ATR}_0 \vdash \exists W \ \underbrace{\left(B(W) \nrightarrow \mathsf{WO}(W)\right)}_{B(W) \land \neg \mathsf{WO}(W)}.$$

Corollary 3

$$FP_0^- \subseteq ATR_0^ FP^- \subseteq ATR^-$$

ABM May 2019 12 / 16

Well-ordering proofs

We use the binary Veblen functions $\varphi_{\alpha}(\beta)$, i.e. $\varphi_{0}(\alpha) = \omega^{\alpha}$ and

$$\varphi_{\alpha} \colon \mathrm{Ord} \to \mathrm{Ord}$$

enumerates the common fixed points of all φ_{β} with $\beta < \alpha$. Γ_0 denotes the first ordinal such that $\varphi_{\Gamma_0}(0) = \Gamma_0$.

13 / 16

ABM May 2019

Well-ordering proofs

We use the binary Veblen functions $\varphi_{\alpha}(\beta)$, i.e. $\varphi_0(\alpha) = \omega^{\alpha}$ and

$$\varphi_{\alpha} \colon \mathrm{Ord} \to \mathrm{Ord}$$

enumerates the common fixed points of all φ_{β} with $\beta < \alpha$. Γ_0 denotes the first ordinal such that $\varphi_{\Gamma_0}(0) = \Gamma_0$. Using \lhd we establish upper proof-theoretic bounds relative to an anonymous relation variable Q. Abbreviations:

$$\alpha \subseteq S := (\forall \xi \lhd \alpha)(\xi \in S)$$
$$\operatorname{Prog}(S) := \forall \alpha (\alpha \subseteq S \to \alpha \in S)$$
$$\operatorname{TI}(S, \alpha) := \operatorname{Prog}(S) \to \alpha \subseteq S$$

(ロ) (個) (量) (量) (量) (例)(()

ABM May 2019 13 / 16

Well-ordering proofs

We use the binary Veblen functions $\varphi_{\alpha}(\beta)$, i.e. $\varphi_0(\alpha) = \omega^{\alpha}$ and

$$\varphi_{\alpha} \colon \mathrm{Ord} \to \mathrm{Ord}$$

enumerates the common fixed points of all φ_{β} with $\beta < \alpha$. Γ_0 denotes the first ordinal such that $\varphi_{\Gamma_0}(0) = \Gamma_0$. Using \triangleleft we establish upper proof-theoretic bounds relative to an anonymous relation variable Q. Abbreviations:

$$\alpha \subseteq S := (\forall \xi \lhd \alpha)(\xi \in S)$$

$$\operatorname{Prog}(S) := \forall \alpha (\alpha \subseteq S \to \alpha \in S)$$

$$\operatorname{TI}(S, \alpha) := \operatorname{Prog}(S) \to \alpha \subseteq S$$

$$\operatorname{Sp}(S) := \lambda \alpha . \forall \xi (\xi \subseteq S \to \xi + \alpha \subseteq S)$$

$$\mathcal{W}(\alpha) := \operatorname{TI}(Q, \alpha)$$

We set

$$\widehat{\varphi}(\alpha,\eta) := \varphi_{\alpha_1}(\varphi_{\alpha_2}(\dots(\varphi_{\alpha_n}(\varphi_{e(\alpha)}(\eta))\dots))$$

where

$$\alpha \stackrel{\mathsf{NF}}{=} \underbrace{\omega^{\alpha_1} + \ldots + \omega^{\alpha_n}}_{\operatorname{h}(\alpha)} + \omega^{e(\alpha)} \quad \text{and} \quad \alpha_1 \trianglerighteq \ldots \trianglerighteq \alpha_n \trianglerighteq \operatorname{e}(\alpha) \,,$$

< ロ > < 回 > < 回 > < 巨 > < 巨 >) 至 り < ○

ABM B

We set

$$\widehat{\varphi}(\alpha,\eta) := \varphi_{\alpha_1}(\varphi_{\alpha_2}(\dots(\varphi_{\alpha_n}(\varphi_{e(\alpha)}(\eta))\dots))$$

where

$$\alpha \stackrel{\mathsf{NF}}{=} \underbrace{\omega^{\alpha_1} + \ldots + \omega^{\alpha_n}}_{\mathbf{h}(\alpha)} + \omega^{e(\alpha)} \quad \mathsf{and} \quad \alpha_1 \trianglerighteq \ldots \trianglerighteq \alpha_n \trianglerighteq \mathbf{e}(\alpha) \,,$$

and define the jump operator

$$\operatorname{Sp}^*(S, \alpha) := \lambda \beta. (\forall \xi \triangleleft \alpha) (\varphi_{e(\alpha)}(\beta) \in \operatorname{Sp}(S_{\xi})).$$

Finally we consider hierarchies

$$\mathcal{R}(S, \tilde{\alpha}) := (\forall \alpha \leq \tilde{\alpha}) (0 \triangleleft \alpha \rightarrow S_{\alpha} = \operatorname{Sp}^{*}(S, \alpha))$$

Lemma 4 (Lower proof-theoretic bounds for $prATR_{(0)}^-$)

$$\begin{split} \operatorname{prATR}_0^- &\vdash \mathcal{W}(\alpha) \ \, \textit{for all} \ \, \alpha \lhd \varphi_{\varepsilon_0}(0) \\ \operatorname{prATR}^- &\vdash \mathcal{W}(\alpha) \ \, \textit{for all} \ \, \alpha \lhd \varphi_{\varphi_1(\varepsilon_0)}(0) \end{split}$$

Proof sketch: We use the following theorem adapted to our setting featuring the anonymous relation Q:

15 / 16

ABM May 2019

Lemma 4 (Lower proof-theoretic bounds for $prATR_{(0)}^-$)

$$\begin{split} \operatorname{prATR}_0^- &\vdash \mathcal{W}(\alpha) \ \, \textit{for all} \ \, \alpha \lhd \varphi_{\varepsilon_0}(0) \\ \operatorname{prATR}^- &\vdash \mathcal{W}(\alpha) \ \, \textit{for all} \ \, \alpha \lhd \varphi_{\varphi_1(\varepsilon_0)}(0) \end{split}$$

Proof sketch: We use the following theorem adapted to our setting featuring the anonymous relation Q:

Theorem

$$\mathsf{ACA}_0 + \{ \mathrm{TI}(A, \alpha) \colon A(x) \text{ arithmetic} \}$$
 proves that

$$R(Y,\alpha) \wedge \beta \subseteq Y_{\alpha} \to \mathrm{TI}(Y_0,\widehat{\varphi}(\alpha,\beta))$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

Lemma 4 (Lower proof-theoretic bounds for $prATR_{(0)}^-$)

$$\begin{split} \operatorname{prATR}_0^- &\vdash \mathcal{W}(\alpha) \ \, \textit{for all} \ \, \alpha \lhd \varphi_{\varepsilon_0}(0) \\ \operatorname{prATR}^- &\vdash \mathcal{W}(\alpha) \ \, \textit{for all} \ \, \alpha \lhd \varphi_{\varphi_1(\varepsilon_0)}(0) \end{split}$$

Proof sketch: We use the following theorem adapted to our setting featuring the anonymous relation Q:

Theorem

 $\mathsf{ACA}_0 + \{ \mathrm{TI}(A, \alpha) \colon A(x) \text{ arithmetic} \}$ proves that

$$R(Y,\alpha) \wedge \beta \subseteq Y_{\alpha} \to \mathrm{TI}(Y_0,\widehat{\varphi}(\alpha,\beta))$$

Using (prATR⁻) there exists a hierarchy Y along $\lhd \upharpoonright m$ such that $Y_0 = Q$, $\mathcal{R}(Y,m)$. Then we use $0 \subseteq Q$ and that the fact that for arithmetic A(x)

$$\mathsf{ACA}_0 \vdash \mathrm{TI}(A(x), \alpha) \text{ for all } \alpha \lhd \varepsilon_0$$

 $\mathsf{ACA} \vdash \mathrm{TI}(A(x), \alpha) \text{ for all } \alpha \lhd \varphi_1(\varepsilon_0)$

15 / 16

ABM May 2019

Corollary 4

$$|\operatorname{prATR}_0^-| \ge \varphi_{\varepsilon_0}(0)$$
 & $|\operatorname{prATR}^-| \ge \varphi_{\varphi_1(\varepsilon_0)}(0)$

By showing that FP_0^- is conservative over $|\widehat{\mathsf{ID}_1}|$ it follows that

Lemma 5

$$|\mathsf{FP}_0^-| = |\widehat{\mathsf{ID}}_1| = \varphi_{\varepsilon_0}(0)$$

Combining everything so far gives

$$\begin{array}{l} \mathsf{ATR}_0^- \approx \mathsf{ATR}_0 \\ |\mathsf{prATR}_0^-| = |\mathsf{FP}_0^-| = \varphi_{\varepsilon_0}(0) \\ \mathsf{ATR}^- \approx \mathsf{ATR} \\ \mathsf{prATR}^- \subseteq \mathsf{FP}^- \\ |\mathsf{prATR}^-| \geq \varphi_{\varphi_1(\varepsilon_0)}(0) \end{array}$$

Corollary 4

$$|\mathrm{prATR}_0^-| \geq \varphi_{\varepsilon_0}(0) \quad \& \quad |\mathrm{prATR}^-| \geq \varphi_{\varphi_1(\varepsilon_0)}(0)$$

By showing that FP_0^- is conservative over $|\widehat{ID}_1|$ it follows that

Lemma 5

$$|\mathsf{FP}_0^-| = |\widehat{\mathsf{ID}}_1| = \varphi_{\varepsilon_0}(0)$$

Combining everything so far gives

$$\begin{array}{l} \mathsf{ATR}_0^- \approx \mathsf{ATR}_0 \\ |\mathsf{prATR}_0^-| = |\mathsf{FP}_0^-| = \varphi_{\varepsilon_0}(0) \\ \mathsf{ATR}^- \approx \mathsf{ATR} \\ \mathsf{prATR}^- \subseteq \mathsf{FP}^- \\ |\mathsf{prATR}^-| \geq \varphi_{\varphi_1(\varepsilon_0)}(0) \end{array}$$

If we can show that $|\mathsf{FP}^-| \leq \varphi_{\varphi_1(\varepsilon_0)}(0)$ it follows that

$$|\mathrm{prATR}^-| = |\mathrm{FP}^-| = \varphi_{\varphi_1(\varepsilon_0)}(0)$$

ABM May 2019 16 / 16

Thank you for your attention!